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Abstract. We investigate Cauchy problems for complex differential
equations of the form Bu = Lu, where B is a Bessel differential operator
in the “time variable”, and L a linear differential operator in the “space
variables”, possibly also involving Bessel operators. We establish condi-
tions for existence and uniqueness of polynomial solutions whenever the
Cauchy data is polynomial, and we give explicit formulas for these solu-
tions. When the Cauchy data consists of monomials, these polynomial
solutions are analogous to the heat polynomials for the heat equation.

1. Introduction

A Bessel operator has the form

B =
∑̀
i=0

bi

t`−i

∂i

∂ti
,

where the coefficients {bi} are complex constants. The “time variable” t may
be either a real or complex variable, with the derivative ∂/∂t correspondingly
either an ordinary derivative or a complex derivative. We seek polynomial
solutions of Cauchy problems of the form

(1.1) Bu (x, t) = Lu (x, t) ,

(1.2)
∂iu (x, 0)

∂ti
= δikq (x) , 0 ≤ i < ` ,

where k ∈ Z, 0 ≤ k < `, and q is a polynomial in x = (x1, · · · , xn). The
“space variables” {xi} likewise may be real or complex, and the linear op-
erator L may involve Bessel operators with respect to these variables. Of
particular interest is the case q (x) = xβ , when polynomial solutions of the
problem can be regarded as analogues of the classical heat polynomials. (The
designations “time variable” and “space variables” are somewhat arbitrary,
as there is no requirement that the variables have these physical interpreta-
tions. However, in many applications such is the case.)
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The heat polynomials {pβ} are polynomial solutions of Cauchy problems
for the heat equation,

(1.3)
∂

∂t
pβ (x, t) = ∆pβ (x, t) , pβ (x, 0) = xβ ,

where ∆ is the Laplace operator in n space dimensions, β is a multi-index
in Rn, and

xβ = x1
β1x2

β2 . . . xn
βn .

These polynomials appear in early work of Appell [1], and were later studied
in detail by Rosenbloom and Widder [26, 28, 29, 30]. They are of interest be-
cause there are explicit formulas for them, and they are helpful in analyzing
the more general Cauchy problem

(1.4)
∂

∂t
u (x, t) = ∆u (x, t) , u (x, 0) = f (x) .

Indeed, if f can be suitably approximated by polynomials, then under cer-
tain conditions a solution u of (1.4) can be approximated by linear combi-
nations of heat polynomials. Various authors have produced analogues of
the heat polynomials for more general partial differential equations. We cite
several examples in this paper, and refer the reader to [15, 16, 17, 18] for
further references.

In Section 2 of this paper we discuss the factorization of Bessel operators.
In Section 3 we determine conditions for existence and uniqueness of poly-
nomial solutions of problem (1.1) – (1.2), and produce explicit formulas for
these solutions; these results are quite general in nature. In Section 4 we
specialize to q (x) = xβ and to space operators of the form

Lu =
∑
α

aα∂α .

In this case a generating function can be displayed for the polynomial solu-
tions, which we describe in Sections 5 and 6. In Section 7 we specify that L
be a Bessel operator in one space variable. Then certain restrictions must
be placed on the Cauchy data q (x) and xβ in order to guarantee polynomial
solutions. The theory in this case can be specialized to produce results of
several authors, as we point out. Finally, in Section 8 we extend the analysis
of Section 7 to the most general version of (1.1), allowing L to involve Bessel
operators in all n space variables x1, . . . , xn.

Good sources of examples and references regarding polynomial solutions
of equations involving Bessel operators are the papers of Bragg and Dettman
[2, 3, 5, 6].

There is an interesting body of work on the problem of determining all
polynomial solutions of systems of partial differential equations with con-
stant coefficients, as well as the dimensions of solution spaces of polynomials
of specified degree. For important papers and further bibliographical refer-
ences, see [19, 20, 21, 23, 24, 25, 27].
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2. Factoring Bessel Operators

We let B denote the `-th order Bessel operator (` ≥ 1),

(2.1) B =
∂`

∂t`
+

b`−1

t

∂`−1

∂t`−1
+

b`−2

t2
∂`−2

∂t`−2
+ · · ·+ b1

t`−1

∂

∂t
+

b0

t`
.

The coefficients {bi : i = 0, 1, · · · , `} are complex constants with b` = 1. The
auxiliary polynomial B associated with B, defined on complex numbers z ∈
C, is

(2.2) B (z) = b0 +
∑̀
i=1

biz (z − 1) (z − 2) · · · (z − i + 1) =
∏̀
i=1

(z + `νi) ,

where the complex numbers {−`νi} are the roots of B, repeated according
to multiplicity. We point out that the collection {bi} is an ordered collection,
as changing the numbering of these quantities will likely change the operator
B and polynomial B. On the other hand, the collection {νi : i = 1, 2, . . . , `}
is unordered, as changing the numbering of these quantities does not affect
the validity of (2.2). We will find that indeed all algebraic expressions in
this paper will be symmetric with respect to the νi’s; that is, changing the
numbering of the νi’s will not affect the value of any of these expressions.
Consequently, in any such expression the choice of a numbering for the νi’s
is irrelevant.

Observe that (2.2) implies also the formula

b0 +
∑̀
i=1

bi

(
t
∂

∂t

)(
t
∂

∂t
− 1
)
· · ·
(

t
∂

∂t
− i + 1

)
=
∏̀
i=1

(
t
∂

∂t
+ `νi

)
,

while an easy induction proof shows that(
t
∂

∂t

)(
t
∂

∂t
− 1
)(

t
∂

∂t
− 2
)
· · ·
(

t
∂

∂t
− i + 1

)
= ti

∂i

∂ti
;

consequently we may write B in the factored form

(2.3) B =
1
t`

∏̀
i=1

(
t
∂

∂t
+ `νi

)
.

In particular, for any integer j,

(2.4) B
(
tj
)

= tj−`
∏̀
i=1

(j + `νi) = B (j) tj−` .

It is clear that, given an ordered collection {bi}, equation (2.2) determines
uniquely the unordered collection {νi}. We now demonstrate how (2.2) may
be used also to determine uniquely {bi} from {νi}. Since each side of (2.2) is
a polynomial of degree `, this equation will be valid provided the two sides
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agree at ` + 1 distinct values of z. We temporarily denote

p (z) =
∏̀
i=1

(z + `νi) ,

and take successively z = 0, 1, 2, · · · , ` in (2.2) to obtain the ` + 1 equations

(2.5)
i∑

k=0

i!
(i− k)!

bk = p (i) , 0 ≤ i ≤ ` .

A straightforward induction argument shows that (2.5) is equivalent to

(2.6) bi =
1
i!

i∑
k=0

(−1)i−k

(
i

k

)
p (k) , 0 ≤ i ≤ ` .

(Alternatively, it can be checked that the coefficient matrices of the linear
systems (2.5) and (2.6) are inverses of one another.) Therefore,

(2.7) bi =
1
i!

i∑
k=0

(−1)i−k

(
i

k

)∏̀
j=1

(k + `νj) , 0 ≤ i ≤ ` .

Hence, (2.2) describes a one-to-one correspondence between ordered collec-
tions {bi : 0 ≤ i ≤ `}, with b` = 1, and unordered collections {νi : 1 ≤ i ≤ `}.
Formula (2.7) allows the recovery of the bi’s from the νi’s.

Given a vector w = (w1, w2, · · · , w`) and scalar c, we define the sum

(2.8) w + c = (w1 + c, w2 + c, · · · , w` + c) .

We set ν = (ν1, ν2, · · · , ν`). We let {Si : i = 0, 1, 2, · · · , `} denote the stan-
dard homogeneous symmetric polynomials in ` variables, defined for z =
(z1, · · · , z`) according to

S0 (z) = 1 , S1 (z) = z1 + z2 + · · ·+ z` ,

and for i ≥ 2,
Si (z) =

∑
k1<k2<···<ki

zk1zk2 · · · zki
.

Then, for any complex constant c and z ∈ C`,

(2.9)
∏̀
j=1

(c + zj) =
∑̀
j=0

c`−jSj (z) .

In (2.7) we write k + `νj = (k + 1) + (`νj − 1) and use (2.9) to obtain

bi =
1
i!

i∑
k=0

(−1)i−k

(
i

k

)∑̀
j=0

(k + 1)`−j Sj (`ν − 1)

=
1
i!

∑̀
j=0

Sj (`ν − 1)
i∑

k=0

(−1)i−k

(
i

k

)
(k + 1)`−j .
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It is known (see [7], Formula 0.154 - 6) that
i∑

k=0

(−1)i−k

(
i

k

)
(k + 1)m = 0 , 0 ≤ m < i , m, i ∈ N .

Thus the sum over j for bi may stop at `− i, yielding

(2.10) bi =
1
i!

`−i∑
j=0

Sj (`ν − 1)
i∑

k=0

(−1)i−k

(
i

k

)
(k + 1)`−j .

This representation demonstrates that bi is a polynomial of degree at most
` − i with respect to ν = (ν1, ν2, · · · , ν`), and is symmetric with respect to
these variables.

3. Polynomial Solutions of Cauchy Problems

We consider the partial differential equation

(3.1) Bu (x, t) = Lu (x, t) ,

where B is the Bessel operator (2.1), and L an operator

(3.2) L =
∑
α

aα∂α
x .

The complex valued function u depends on (x, t) = (x1, . . . , xn, t) (n ≥ 1).
The coefficients {aα} are complex constants, and the derivative ∂α

x is

(3.3) ∂α
x =

∂|α|

∂x1
α1∂x2

α2 . . . ∂xn
αn

.

The summation (3.2) is taken over a finite collection of multi-indices α in
Rn, and we assume that no α is the zero multi-index; that is, the sum is a
finite one and L has no zero order term. We allow either t ∈ R or t ∈ C, and
accordingly regard ∂/∂t either as an ordinary real derivative or a complex
derivative. Likewise, we allow either x ∈ Rn or x ∈ Cn, with (3.3) either
ordinary differentiation in Rn or complex differentiation in Cn. Given a
complex valued polynomial q = q (x), and integer k, 0 ≤ k < `, we seek a
polynomial solution u of (3.1), satisfying as well the Cauchy condition

(3.4)
∂iu (x, 0)

∂ti
=
{

0 , 0 ≤ i < ` , i 6= k ,
q (x) , i = k ,

Any polynomial u in x and t can be written in the form

u (x, t) =
∞∑

j=0

pj (x) tj ,

where each pj is a polynomial in x, and only a finite number of {pj} are
nonzero. The initial condition (3.4) requires further that

(3.5) pk (x) =
q (x)
k!

, pj (x) = 0 , 0 ≤ j ≤ `− 1, j 6= k .
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so that

(3.6) u (x, t) = q (x)
tk

k!
+

∞∑
j=`

pj (x) tj .

We substitute (3.6) into (3.1), while using (2.4), and obtain

(3.7) q (x) B (k)
tk−`

k!
+

∞∑
j=`

pj (x) B (j) tj−` = Lq (x)
tk

k!
+

∞∑
j=`

Lpj (x) tj .

Equating coefficients of like powers of t in (3.7) leads to the requirements

(3.8) q (x) B (k) = 0 ,

(3.9) p`+k (x) B (` + k) =
1
k!
Lq (x) = Lpk (x) ,

(3.10) pj (x) B (j) = 0 , ` ≤ j ≤ 2`− 1 , j 6= k + ` ,

(3.11) pj (x) B (j) = Lpj−` (x) , j ≥ 2` .

To comply with (3.8) we stipulate that B (k) = 0 (necessarily, except in
the single case q ≡ 0). If we decree further that

(3.12) B (j) 6= 0 , j = `, ` + 1, ` + 2, . . . ,

then equations (3.9) – (3.11) have unique solutions {pj : j ≥ `}, described
by the recursive formulas

(3.13) pj (x) =
{
Lpj−` (x) /B (j) , j = k + `, k + 2`, k + 3`, . . . ,

0 , otherwise ,

where pk is prescribed by (3.5). On the other hand, if we want only the
existence of solutions, it is sufficient to require only that

(3.14) B (k + j`) 6= 0 , j = 1, 2, 3, . . . ;

then (3.13) still defines a solution of (3.9) – (3.11), although there may be
other solutions as well. As the quantities {−`νi} are the roots of B, (3.14)
may be stated alternatively as

k + `j + `νi 6= 0 , i = 1, 2, . . . , ` , j = 1, 2, 3, . . . .

An equivalent statement is that none of the quantities

{νi + k/` : i = 1, 2, . . . , `}

are negative integers. Beginning with the left formula of (3.5), under as-
sumption (3.14) we may iterate the top equation of (3.13) to deduce that

(3.15) pm`+k (x) =
1
k!

Lmq (x)∏m
j=1 B (k + j`)

, m = 1, 2, 3, . . . .
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Then our function u of (3.6) becomes

(3.16) u (x, t) = q (x)
tk

k!
+

1
k!

∞∑
m=1

Lmq (x) tm`+k∏m
j=1 B (k + j`)

.

Since the operator L has no zero order term, and q is a polynomial, we have
Lmq (x) = 0 for m sufficiently large. Hence the sum in (3.16) terminates
after a finite number of terms, and u is a polynomial in x and t.

We introduce some notation to manipulate the solution (3.16). For com-
plex numbers z we employ the usual notation

z! = Γ (z + 1) ,

where Γ is the gamma function. Then z! is meromorphic with poles only at
the negative integers, and satisfies the functional equation

(3.17) z! = z (z − 1) (z − 2) . . . (z − i + 1) (z − i)!

whenever z − i is not a negative integer. For a complex `-tuple ν =
(ν1, ν2, . . . , ν`) and for c ∈ C we denote

ν! = ν1! ν2! . . . ν`! , ν + c := (ν1 + c, ν2 + c, . . . , ν` + c) .

Then, in view of (2.2), and since no value νi + k/` is a negative integer, we
may write (3.15) as

pm`+k (x) =
1
k!

Lmq (x)∏m
j=1

∏`
i=1 (k + `j + `νi)

=
1
k!

Lmq (x)

`m`
∏`

i=1

∏m
j=1 (νi + j + k/`)

=
1
k!

Lmq (x)

`m`
∏`

i=1 (νi + m + k/`)!/ (νi + k/`)!

=
1
k!

(ν + k/`)!Lmq (x)
`m` (ν + m + k/`)!

.

By (3.5), this formula holds also for m = 0; thus we may write (3.16) also
as

(3.18) u (x, t) =
(ν + k/`)!

k!

∞∑
m=0

Lmq (x) tm`+k

`m` (ν + m + k/`)!
.

We summarize the discussion of this section with a formal statement :

Theorem 1. Let B be the Bessel operator (2.1), with auxiliary polynomial
(2.2), and let L be the operator (3.2) with no zero order term. Let k be an
integer, 0 ≤ k < `, and suppose that

(3.19) B (k) = 0 , B (k + j`) 6= 0 , j = 1, 2, 3, . . . .

Let q = q (x) be a polynomial. Then the Cauchy problem

(3.20) Bu (x, t) = Lu (x, t) ,
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(3.21)
∂iu (x, 0)

∂ti
=
{

0 , 0 ≤ i < ` , i 6= k
q (x) , i = k ,

has a polynomial solution prescribed explicitly by (3.16) and (3.18). If more-
over

(3.22) B (j) 6= 0 , j = `, ` + 1, ` + 2, . . . ,

then there is only one polynomial solution of the problem.

Remark 1. It should be pointed out that the particular structure (3.2) of the
operator L has not entered into the discussion. To obtain Theorem 1 and
representations (3.16), (3.18), we used only linearity of L, along with the
fact that each Lmq is a polynomial, vanishing identically for m sufficiently
large.

Remark 2. If in (3.16) we designate functions

u0 (x, t) =
q (x) tk

k!
, um (x, t) =

q (x) t`m+k

k!
∏m

j=1 B (k + j`)
(m ≥ 1) ,

then we can write this formula as

(3.23) u (x, t) =
∞∑

m=0

Lm [um (x, t)] .

Moreover, with use of (3.19) and (2.4) we can verify that the sequence of
functions {um} has the properties

Bum (x, t) =
{

0 , if m = 0,
um−1 (x, t) , if m ≥ 1.

In the terminology of Karachik [19, 21], the sequence {um} is “0-normalized
with respect to the operator B”. Karachik showed that, for a large class of
constant coefficient partial differential equations of the form

Bu− Lu = 0 ,

polynomial solutions can be written in the form (3.23), where the sequence
{um} is 0-normalized with repect to the operator B. Representation (3.16)
is but one example of this general formulation.

Remark 3. It appears an open question as to what operators B, if any, be-
sides Bessel operators one can expect polynomial solutions to Cauchy prob-
lems (3.20) – (3.21) with polynomial q.

Obviously, for general Bessel operators B the conditions (3.19) need not
hold, in which case Theorem 1 will not apply. For any particular operator
the conditions might hold for one or more values of k, but not for others.
We point out two special cases of interest.
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Example 1. Suppose the operator B has no zero order term, so that b0 = 0
in (2.2). Then B (0) = 0, and (3.19) will be satisfied with k = 0 provided
only that no root of B is a positive integral multiple of `. In this event the
Cauchy problem

Bu (x, t) = Lu (x, t) ,

∂iu (x, 0)
∂ti

=
{

q (x) , i = 0 ,
0 , 1 ≤ i < ` ,

with q a polynomial, has a polynomial solution

u (x, t) = q (x) +
∞∑

m=1

Lmq (x) tm`∏m
j=1 B (j`)

= ν!
∞∑

m=0

Lmq (x) tm`

`m` (ν + m)!
.

Example 2. Consider the very special Bessel operator

B =
∂`

∂t`
,

with corresponding auxiliary polynomial

B (z) = z (z − 1) (z − 2) · · · (z − ` + 1) .

Then B (0) = B (1) = · · · = B (`− 1) = 0, and Theorem 1 applies for
k = 0, 1, . . . , `− 1. The theorem ensures that for each such k the problem

∂`u (x, t)
∂t`

= Lu (x, t) ,

with initial condition (3.21), has only one polynomial solution. Into the
representation (3.16) we substitute

m∏
j=1

B (k + j`) =
(k + m`)!

k!

to obtain the simplified formula

u (x, t) =
∞∑

m=0

Lmq (x) tm`+k

(k + m`)!
.

4. Analogues of Heat Polynomials

We continue to assume the hypotheses of Theorem 1 (but not necessarily
(3.22)), and consider the problem

(4.1) Bpβ,k (x, t) = Lpβ,k (x, t) ,

(4.2)
∂ipβ,k (x, 0)

∂ti
=
{

0 , 0 ≤ i < ` , i 6= k ,
xβ , i = k .

According to Theorem 1, there exists the polynomial solution

(4.3) pβ,k (x, t) =
(ν + k/`)!

k!

∞∑
m=0

Lm
(
xβ
)

tm`+k

`m` (ν + m + k/`)!
.
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We introduce some notation in order to write (4.3) in terms of the roots
{−`νi} of the auxiliary polynomial B of B. Let I denote the number of
indices in the summation (3.2) corresponding to nonzero aα, so that we may
label these indices as α1, α2, . . ., αI , and the corresponding coefficients {aα}
as a1, a2, . . ., aI . Then L can be written alternatively as

(4.4) L =
I∑

k=1

ak ∂αk

x .

We recall the general multinomial formula

(4.5) (c1 + c2 + · · ·+ cI)
m =

∑
|σ|=m

m!
σ!

cσ ,

where c = (c1, c2, . . . , cI), σ = (σ1, σ2, . . . , σI), and the summation is over all
multi-indices σ in RI . We define a “vector of multi-indices” α̂, and vector
of coefficients a, according to

(4.6) α̂ =
(
α1, α2, · · · , αI

)
, a = (a1, a2, · · · , aI) ,

and introduce a “dot product”

α̂ · σ = σ1α
1 + σ2α

2 + · · ·+ σIα
I .

With this notation, we may write

(4.7) Lm =
(
a1∂

α1

x + a2∂
α2

x + · · ·+ aI∂
αI

x

)m
=
∑
|σ|=m

m!
σ!

aσ ∂α̂·σ
x ,

so that (4.3) becomes

pβ,k (x, t) =
(ν + k/`)!

k!

∞∑
m=0

tm`+k

`m` (ν + m + k/`)!

∑
|σ|=m

m!
σ!

aσ ∂α̂·σ
x

(
xβ
)

=
(ν + k/`)!

k!

∑
σ

tk+`|σ|

``|σ| (ν + |σ|+ k/`)!
|σ|!
σ!

aσ ∂α̂·σ
x

(
xβ
)

,

with the summation over all multi-indices σ in RI . Using the formula

(4.8) ∂γ
(
xβ
)

=
{

xβ−γβ!/ (β − γ)! , if γ ≤ β,
0 , otherwise,

where γ ≤ β means γk ≤ βk for each k, we may finally write our polynomial
solution of problem (4.1) – (4.2) as
(4.9)

pβ,k (x, t) =
β! (ν + k/`)!

k!

∑
α̂·σ≤β

|σ|! aσ xβ−α̂·σ tk+`|σ|

σ! ``|σ| (ν + |σ|+ k/`)! (β − α̂ · σ)!
,

with the summation over all multi-indices σ in RI such that α̂ ·σ ≤ β. (Since
(3.2) has no zero order term, α̂ · σ ≤ β is possible for only a finite number
of multi-indices σ.)
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For γ a multi-index in Rn, we apply the operator ∂γ
x to both sides of (4.3)

and obtain

∂γ
xpβ,k (x, t) =

(ν + k/`)!
k!

∞∑
m=0

Lm
(
∂γxβ

)
tm`+k

`m` (ν + m + k/`)!
.

In view of (4.8) this equation leads to

(4.10) ∂γ
xpβ,k (x, t) =

{
β!

(β−γ)!pβ−γ,k (x, t) , if γ ≤ β,
0 , otherwise.

Example 3. Consider again the special case considered in Example 2,

B =
∂`

∂t`
,

when the roots {−ν`} of the auxiliary polynomial are {0, 1, . . . , `− 1}. We
may take

ν = {0,−1/`,−2/`, · · · ,− (`− 1) /`} .

A calculation gives the simplification

(ν + k/`)!
``|σ| (ν + |σ|+ k/`)!

=
k!

(k + ` |σ|)!
;

consequently, (4.9) simplifes to

pβ,k (x, t) = β!
∑

α̂·σ≤β

|σ|!
σ!

aσ xβ−α̂·σ tk+`|σ|

(β − α̂ · σ) (k + ` |σ|)!
.

This formula was derived in the paper [18] of the present authors. The case
` = 1 is discussed in some detail in the authors’ papers [15, 16, 17], where
pointwise bounds are established on the polynomials, and series expansions
in the polynomials are investigated.

Example 4. Next consider the equation

(4.11)
∂2u (x, t)

∂t2
+

2b + 1
t

∂u (x, t)
∂t

= ε∆u (x, t) = ε
n∑

i−1

∂2u (x, t)
∂xi

2
,

where b, ε ∈ C and ε 6= 0. When ε = 1 the equation is the “Euler-Poisson-
Darboux” equation, and when ε = −1 it is the “Beltrami equation”. On the
left we have a Bessel operator of order ` = 2, with b0 = 0 and auxiliary
polynomial

B (z) = z (z + 2b) ,

and hence with ν = (0, b). On the right is an operator L, for which the
vectors α̂ and a of (4.6) become the n-vectors

α̂ = (2e1, 2e2, . . . , 2en) , a = (ε, . . . , ε) ,

where ei is the i-th unit multi-index in Rn. We assume that b is not a
negative integer, so that (3.19) holds with k = 0. Then, for any multi-index
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β in Rn, there is a polynomial solution pβ of (4.11) satisfying also the initial
condition

pβ (x, 0) = xβ ,
∂

∂t
pβ (x, 0) = 0 .

Observing that, for σ any multi-index in Rn,

α̂ · σ = 2σ1e1 + 2σ2e2 + · · ·+ 2σnen = 2σ ,

we may write the solution (4.9) (with k = 0) as

pβ (x, t) = β!b!
∑
2σ≤β

ε|σ| xβ−2σ t2|σ|

4|σ| σ! (b + |σ|)! (β − 2σ)!
,

where the sum is over all multi-indices σ in Rn such that 2σ ≤ β. For the
cases ε = 1 and ε = −1 these polynomials were first discussed by E. P. Miles
and E. Williams [22], and later in more detail by Bragg and Dettman [3, 5].

5. The Function E

Representations (3.16) and (3.18) motivate the introduction of a function
E as the formal sum

E (t, τ ; ν, k) =
tk

k!
+

1
k!

∞∑
m=1

tm`+kτm∏m
j=1 B (k + j`)

(5.1)

=
(ν + k/`)!

k!

∞∑
m=0

tm`+kτm

`m` (ν + m + k/`)!
.(5.2)

We view t and τ (τ ∈ Z) as variables of this function, and ν and k as
parameters. Then both (3.16) and (3.18) can be written symbolically with
the brief notation

(5.3) u (x, t) = E (t,L; ν, k) q (x) .

We discuss properties of the function E. As in Section 3, we assume that

B (k) = 0 , B (k + j`) 6= 0 , j = 1, 2, 3, . . . .

Equivalently, in terms of the roots {−`νi : i = 1, 2, . . . , `} of B, we assume
νi = −k/` for some i, and that no value νi + k/` is a negative integer. It
follows that in (5.2) the factorials

(ν + m + k/`)! =
∏̀
i=1

(νi + m + k/`)!

are indeed defined. With use of the ratio test it is easily deduced that the
power series (5.2) converges uniformly for t and τ on compact subsets of C,
representing a C∞ function with respect to the variables t and τ , and that
termwise differentiation of all orders with respect to t and/or τ is valid.

Termwise differentiation of version (5.1) of E confirms that

(5.4)
∂iE(0, τ ; ν, k)

∂ti
=
{

1 , if i = k,
0 , if i 6= k, 0 ≤ i < `.
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Applying the operator B to (5.1) gives, with use of of (2.4) and B (k) = 0,

BE (t, τ ; ν, k) =
B (k) tk−`

k!
+

1
k!

∞∑
m=1

B (k + m`) tm`+k−`τm∏m
j=1 B (k + j`)

= 0 +
1
k!

B (k + `) tkτ∏1
j=1 B (k + j`)

+
1
k!

∞∑
m=2

B (k + m`) tm`+k−`τm∏m
j=1 B (k + j`)

= τ
tk

k!
+

1
k!

∞∑
m=1

tm`+kτm+1∏m
j=1 B (k + j`)

,

and hence

(5.5) BE (t, τ ; ν, k) = τE (t, τ ; ν, k) .

6. Generating Functions

The polynomials {pβ,k} of Section 4 can be obtained also through a gen-
erating function. As in Section 5 we continue to presume the conditions

B (k) = 0 , B (k + j`) 6= 0 , j = 1, 2, 3, . . . ,

where k is a fixed integer, 0 ≤ k < `, thereby ensuring the existence of the
function E of (5.1) – (5.2). We associate with the operator L of (3.2) a
polynomial

Q (y) =
∑
α

aαyα =
I∑

i=1

aiy
αi

,

where y = (y1, . . . , yn) is a vector in the same space (Rn or Cn) as x. Finally
we define

(6.1) Gk (x, t, y) = ex·yE (t, Q (y) ; ν, k) ,

where x · y = x1y1 + · · · + xnyn is the usual dot product, y = (y1, · · · , yn),
and

(6.2) ex·y = ex1y1+···+xnyn =
∑

γ

xγyγ

γ!
,

with the sum over all multi-indices γ in Rn.
Application of (4.5) gives

Q (y)m =

(
I∑

i=1

aiy
αi

)m

=
∑
|σ|=m

m!
σ!

(
a1y

α1
, a2y

α2
, . . . , anyαn

)σ

=
∑
|σ|=m

m!
σ!

aσyα̂·σ ,
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where the last sum is over all multi-indices σ in RI . With these formulas
and (5.2) we may write

Gk (x, t, y) = ex·y (ν + k/`)!
k!

∞∑
m=0

tm`+kQ (y)m

`m` (ν + m + k/`)!

=
(ν + k/`)!

k!

∑
γ

∞∑
m=0

∑
|σ|=m

xγyγ

γ!
tm`+k

`m` (ν + m + k/`)!
m!
σ!

aσyα̂·σ

=
(ν + k/`)!

k!

∑
γ

∑
σ

xγ

γ!
tk+|σ|`

``|σ| (ν + |σ|+ k/`)!
|σ|!
σ!

aσyγ+α̂·σ .

Straightforward application of the ratio test confirms that this last double
series converges absolutely and uniformly for values of x, y and t in compact
sets. The same statement is valid for all derivatives, mixed or unmixed, of
the series with respect to the variables x, y, and t. It follows that Gk is
an analytic function of the variables (x, y, t), the series can be differenti-
ated termwise with respect to any combinations of the variables as often as
desired, and the series and all differentiated series may be summed in any
order. In particular, we may interchange orders of summation, first sum-
ming outside over powers yβ, as β = γ + α̂ · σ ranges over all multi-indices
in Rn, getting

Gk (x, t, y) =
(ν + k/`)!

k!

∑
β

yβ
∑

γ+α̂·σ=β

|σ|!
σ!

aσxγtk+|σ|`

``|σ|γ! (ν + |σ|+ k/`)!

=
(ν + k/`)!

k!

∑
β

yβ
∑

α̂·σ≤β

|σ|!
σ!

aσxβ−α̂·σtk+|σ|`

``|σ| (β − α̂ · σ)! (ν + |σ|+ k/`)!
.

Comparing the last equation with (4.9), we find that

(6.3) Gk (x, t, y) =
∑
β

pβ,k (x, t)
yβ

β!
.

From (6.1), (5.5), (3.2) and (6.2) it follows that

(6.4) BGk (x, t, y) = Q (y) Gk (x, t, y) = LGk (x, t, y) ,

and from (6.1) and (5.4) that

(6.5)
∂iGk(x, 0, y)

∂ti
=
{

ex·y , if i = k,
0 , if i 6= k, 0 ≤ i < `.

Then (6.3) and (6.4) yield∑
β

Bpβ,k (x, t)
yβ

β!
=
∑
β

Lpβ,k (x, t)
yβ

β!
,
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and hence another proof of (4.1). Also, (6.3) implies

∂iGk(x, 0, y)
∂ti

=
∑
β

∂ipβ,k(x, 0)
∂ti

yβ

β!
,

and then (6.5) and (6.2) (with γ replaced by β) produce another proof of
(4.2). Consequently, the power series representation (6.3) could be used as
a definition of the polynomials {pβ,k}.

7. Bessel Space Operator

As explained in Remark 1, Theorem 1 can be applied to other operators
besides (3.2). We consider the special case when x is a scalar variable (either
real or complex), and (3.2) is replaced with the s-th order Bessel operator
(s ≥ 1)

(7.1) C =
s∑

i=0

ci

ts−i

∂i

∂xi
.

We assume cs 6= 0, but not necessarily that cs = 1. The auxiliary polynomial
for C is

(7.2) C (z) = c0+
s∑

i=1

ciz (z − 1) (z − 2) · · · (z − i + 1) = cs

s∏
i=1

(z + sµi) ,

with roots {−sµi : 1 ≤ i ≤ s}, repeated according to multiplicity. The op-
erator C factors into

C =
cs

ts

s∏
i=1

(
t
∂

∂t
+ sµi

)
,

and for any integer j,

(7.3) C
(
xj
)

= csx
j−s

s∏
i=1

(j + sµi) = C (j) xj−s .

Let B again be the Bessel operator (2.1). We seek a polynomial solution
of the Cauchy problem

(7.4) Bu (x, t) = Cu (x, t) ,

(7.5)
∂iu (x, 0)

∂ti
=
{

0 , 0 ≤ i < ` , i 6= k ,
xβ , i = k ,

where β is a nonnegative integer. We assume again condition (3.19) of
Theorem 1. Then formulas (3.16) and (3.18), with L replaced by C and
q (x) by xβ, give potential solutions of problem (7.4) – (7.5). However, in



16 G. N. HILE AND ALEXANDER STANOYEVITCH

view of Remark 1, we must be certain that each Cm
(
xβ
)

is a polynomial,
and that Cm

(
xβ
)

= 0 for m sufficiently large. By iteration of (7.3),

(7.6) Cm
(
xβ
)

= xβ−ms
m−1∏
j=0

C (β − js) , m ≥ 1 .

The expression on the right will eventually vanish if C (β −mβs) = 0 for
some nonnegative integer mβ. In this event the sums on the right of (3.16)
and (3.18) terminate at m = mβ. In view of (7.6), to ensure that Cm

(
xβ
)

is a polynomial we require that β −mβs ≥ 0, or mβ ≤ β/s.
For complex numbers z and w we use the notation(

z

w

)
=

z!
w! (z − w)!

whenever the three factorials on the right are defined. For complex n-vectors
u and v we write(

u

v

)
=

u!
v! (u− v)!

=
∏n

i=1 ui!∏n
i=1 vi!

∏n
i=1 (ui − vi)!

=
n∏

i=1

(
ui

vi

)
,

again when all the required factorials are defined. For nonnegative integers
m and for z ∈ C we define

[z]0 = 1 , [z]m = z (z − 1) (z − 2) · · · (z −m + 1) (m ≥ 1) .

For n-vectors we prescribe

[u]m = [u1]m [u2]m · · · [un]m =
n∏

i=1

[ui]m .

We have verified most of the following :

Theorem 2. Let B be the Bessel operator (2.1), with auxiliary polynomial
(2.2), and let C be the Bessel operator (7.1), with auxiliary polynomial (7.2).
Let k be an integer, 0 ≤ k < `, and suppose that

(7.7) B (k) = 0 , B (k + j`) 6= 0 , j = 1, 2, 3, . . . .

Let β be a nonnegative integer such that, for some integer mβ,

(7.8) 0 ≤ mβ ≤ β/s , C (β −mβs) = 0 .
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Then the Cauchy problem (7.4) – (7.5) has a polynomial solution u = pβ,k,
with the explicit representations

pβ,k (x, t) = xβ tk

k!
+

1
k!

mβ∑
m=1

Cm
(
xβ
)
tm`+k∏m

j=1 B (k + j`)
(7.9)

=
(ν + k/`)!

k!

mβ∑
m=0

Cm
(
xβ
)
tm`+k

`m` (ν + m + k/`)!
(7.10)

=
(ν + k/`)!

k!

mβ∑
m=0

[µ + β/s]m cs
msmsxβ−mstm`+k

`m` (ν + m + k/`)!
.(7.11)

If

(7.12) j ∈ Z, j > 0 =⇒ C (β −mβs + js) 6= 0 ,

then these formulas may be written as

pβ,k (x, t)(7.13)

=
(ν + k/`)! (µ + β/s)!

k!

mβ∑
m=0

cs
msmsxβ−mstm`+k

`m` (ν + m + k/`)! (µ + β/s−m)!
.

If

(7.14) B (j) 6= 0 , j = `, ` + 1, ` + 2, . . . ,

then there is only one polynomial solution of the problem (7.4) - (7.5).

Proof. The preceding discussion has verified all assertions, except formula
(7.11), and formula (7.13) under the additional assumption (7.12).

For 1 ≤ m ≤ mβ in (7.10), we may use (7.6) and (7.2) to write

Cm
(
xβ
)

= xβ−ms
m−1∏
j=0

cs

s∏
i=1

(β − js + sµi)

= cs
msmsxβ−ms

s∏
i=1

m−1∏
j=0

(µi + β/s− j)(7.15)

= cs
msmsxβ−ms

s∏
i=1

[µi + β/s]m

= cs
msmsxβ−ms [µ + β/s]m .(7.16)

As this formula holds also for m = 0, we substitute it into (7.10) to obtain
(7.11).

Next assume (7.12) holds. Given any negative integer N we have mβ −
m−N > 0, and hence by (7.12),

C (β −mβs + (mβ −m−N) s) = C (β −ms−Ns) 6= 0 .
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Therefore, for i = 1, 2, . . . , s,

β −ms−Ns 6= −sµi ,

µi + β/s−m 6= N .

Thus we may apply (3.17) in (7.15) to write

Cm
(
xβ
)

= cs
msmsxβ−ms

s∏
i=1

(µi + β/s)!
(µi + β/s−m)!

= cs
msmsxβ−ms (µ + β/s)!

(µ + β/s−m)!
.

Substitution into (7.10) gives (7.13). �

Example 5. Suppose the Bessel operator C has no zero order term, so that
c0 = 0 in (7.2) and C (0) = 0. If β = Ms for some nonnegative integer M ,
then (7.8) is satisfied with mβ = M . If we assume further that B has no
zero order term, then (7.7) is satisfied with k = 0 provided that no root of
B is a positive integral multiple of `. Then the Cauchy problem

Bu (x, t) = Cu (x, t) ,

∂iu (x, 0)
∂ti

=
{

xMs , i = 0 ,
0 , 1 ≤ i < ` ,

has a solution

pMs,0 (x, t) = xMs +
M∑

m=1

Cm
(
xMs

)
tm`∏m

j=1 B (j`)
.

Condition (7.12) holds if also no root of C is a positive integral multiple of
s, in which event

pMs,0 (x, t) = ν! (µ + M)!
M∑

m=0

cs
m smsx(M−m)stm`

`m` (ν + m)! (µ + M −m)!
.

Example 6. Consider the Cauchy problem

(7.17)
∂

∂t
u (r, t) =

∂2

∂r2
u (r, t) +

2c + 1
r

∂

∂r
u (r, t) ,

(7.18) u (r, 0) = rβ ,

where c ∈ C. When 2c + 1 = n − 1, the right side of (7.17) is the n-
dimensional Laplacian in radial coordinates. We have ` = 1, s = 2, b` =
cs = 1, and

B =
∂

∂t
, B (z) = z , ν = 0 ,

C =
∂2

∂r2
+

2c + 1
r

∂

∂r
, C (z) = z (z + 2c) , µ = (0, c) .
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Then (7.7) holds with k = 0, while (7.8) will hold if we choose β = 2M for
some nonnegative integer M , in which case mβ = M . As (7.14) likewise
is valid, formula (7.10) gives the unique polynomial solution pβ of (7.17) –
(7.18) as

p2M (r, t) =
M∑

m=0

Cm
(
r2M

)
tm

m!
.

If we assume c is not a negative integer, then (7.12) holds, and from (7.13)
we have the alternate representation

p2M (r, t) = (µ + M)!
M∑

m=0

22mr2(M−m)tm

m! (µ + M −m)!
.

Substituting µ+M = (M,M + c), µ+M −m = (M −m,M −m + c) gives

p2M (r, t) = (M + c)!
M∑

m=0

(
M

m

)
r2(M−m) (4t)m

(M −m + c)!

= (M + c)!
M∑

m=0

(
M

m

)
r2m (4t)M−m

(m + c)!
.

The polynomials {p2M} are called “radial heat polynomials”. They have been
studied in some detail by Bragg [2] and Haimo [8, 9, 10, 12, 13, 14].

Example 7. Consider the partial differential equation

(7.19)
∂2

∂t2
u (r, t) = ε

[
∂2

∂r2
u (r, t) +

2c + 1
r

∂

∂r
u (r, t)

]
,

where c, ε ∈ C and ε 6= 0. When ε = 1 and 2c + 1 = n − 1, the equation is
called the “radial wave equation”, and when ε = −1 and 2c + 1 = n− 1 it is
the “radial Laplace equation”. We have ` = s = 2, b` = 1, cs = ε, and

B =
∂2

∂t2
, B (z) = z (z − 1) , ν = (0,−1/2) ,

C = ε
∂2

∂r2
+

ε (2c + 1)
r

∂

∂r
, C (z) = εz (z + 2c) , µ = (0, c) .

Then (7.7) holds with both k = 0 and k = 1, (7.8) holds if we choose β = 2M
for some nonnegative integer M , with mβ = M . Also, (7.14) is valid. By
Theorem 2, we have unique polynomial solutions of (7.19) satisfying either
of the Cauchy conditions

(7.20) u (r, 0) = r2M ,
∂u (r, 0)

∂t
= 0 ,

(7.21) u (r, 0) = 0 ,
∂u (r, 0)

∂t
= r2M .
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Formula (7.10) gives for problem (7.19), (7.20) the solution

p2M,0 (r, t) = ν!
M∑

m=0

Cm
(
r2M

)
t2m

22m (ν + m)!
,

and for problem (7.19), (7.21),

p2M,1 (r, t) = (ν + 1/2)!
M∑

m=0

Cm
(
r2M

)
t2m+1

22m (ν + m + 1/2)!
.

If c is not a negative integer then (7.12) holds, and (7.13) gives the alternate
representations

p2M,0 (r, t) = ν! (µ + M)!
M∑

m=0

εmr2(M−m)t2m

(ν + m)! (µ + M −m)!

= (−1/2)! (c + M)!
M∑

m=0

(
M

m

)
εmr2(M−m)t2m

(m− 1/2)! (c + M −m)!
,

p2M,1 (r, t) = (ν + 1/2)! (µ + M)!
M∑

m=0

εmr2(M−m)t2m+1

(ν + m + 1/2)! (µ + M −m)!

= (1/2)! (c + M)!
M∑

m=0

(
M

m

)
εmr2(M−m)t2m+1

(m + 1/2)! (c + M −m)!
.

Use of (3.17) leads to

(m− 1/2)! = (−1/2)!
m−1∏
j=0

(m− 1/2− j) = (−1/2)!
(2m)!
22mm!

,

(m + 1/2)! = (1/2)!
m−1∏
j=0

(m + 1/2− j) = (1/2)!
(2m + 1)!

22mm!
.

With use of these identities we may simplify the above representations to

p2M,0 (r, t) =
M∑

m=0

(
M
m

)(
M+c

m

)(
2m
m

) εmr2(M−m) (2t)2m ,

p2M,1 (r, t) =
M∑

m=0

(
M
m

)(
M+c

m

)(
2m
m

)
2 (2m + 1)

εmr2(M−m) (2t)2m+1 .

Observe that

p2M,0 (r, t) =
∂

∂t
p2M,1 (r, t) .

In the cases ε = 1 and ε = −1 these polynomials have been investigated by
Bragg and Dettman [5].
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Example 8. The “radial Euler-Poisson-Darboux equation” and “radial Bel-
trami equation” are special cases of

(7.22)
∂2u (r, t)

∂t2
+

2b + 1
t

∂u (r, t)
∂t

= ε

[
∂2u (r, t)

∂r2
+

2c + 1
t

∂u (r, t)
∂r

]
,

obtained by taking ε = +1 and ε = −1, respectively. Here b, c, ε ∈ C, and
ε 6= 0. For the Bessel operator B on the left we have

B (z) = z (z + 2b) , ν = (0, b) ,

and for the Bessel operator C on the right,

C (z) = εz (z + 2c) , µ = (0, c) .

We assume b is not a negative integer, so that (7.7) holds with k = 0. We
choose β = 2M for some nonnegative integer M , so that (7.8) holds with
mβ = M . By Theorem 2, there exists a polynomial solution pβ of (7.22)
satisfying the initial condition

p2M (r, 0) = r2M ,
∂

∂t
p2M (r, 0) = 0 .

Formula (7.10) gives

p2M (r, t) = ν!
M∑

m=0

Cm
(
r2M

)
t2m

22m (ν + m)!
= b!

M∑
m=0

Cm
(
r2M

)
t2m

22mm! (b + m)!
.

If we assume that also c is not a negative integer, then (7.12) holds, and
(7.13) gives

p2M (r, t) = ν! (µ + M)!
M∑

m=0

εmr2(M−m)t2m

(ν + m)! (µ + M −m)!

= b! (c + M)!
M∑

m=0

(
M

m

)
εmr2(M−m)t2m

(b + m)! (c + M −m)!
.

In the cases ε = +1 and ε = −1, these polynomials were studied as well by
Bragg and Dettman [5].

8. More Bessel Space Operators

We extend the theory of the previous section to space operators in n
variables. For each coordinate space variable xi of x = (x1, . . . , xn), we
introduce a Bessel operator Ci, of order si in this variable,

Ci =
si∑

j=0

cij

xi
si−j

∂j

∂xi
j

(1 ≤ i ≤ n) .
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The coefficients {cij} are complex numbers, and the leading coefficient, cisi ,
of each Ci is nonzero. The auxiliary polynomial of Ci is

Ci (z) = ci0 +
si∑

j=1

cijz (z − 1) (z − 2) · · · (z − j + 1) = cisi

si∏
j=1

(z + siµij) ,

with the complex numbers {−siµij : j = 1, . . . , si} the roots of Ci. For any
integer r,

(8.1) Ci (zr) = cisiz
r−si

si∏
j=1

(r + siµij) = Ci (r) zr−si .

We designate vectors

C = (C1, C2, · · · , Cn) , µi = (µi1, µi2, · · · , µisi) (1 ≤ i ≤ n) ,

and given a multi-index α in Rn we define

Cα = C1
α1C2

α2 · · · Cn
αn .

Finally, we let L denote the operator

L =
∑
α

aαCα ,

where the coefficients {aα} are complex constants, the sum is over a finite
collection of multi-indices α in Rn, and L has no zero order term (corre-
sponding to α = (0, . . . , 0)). We number these multi-indices and coefficients
as in (4.6).

Let B denote our usual Bessel “time operator” (2.1), with auxiliary poly-
nomial (2.2) and leading coefficient b` = 1. Given a polynomial q = q (x),
we consider the Cauchy problem

(8.2) Bu (x, t) = Lu (x, t) ,

(8.3)
∂iu (x, 0)

∂ti
=
{

0 , 0 ≤ i < ` , i 6= k
q (x) , i = k .

As explained in Remark 1, Theorem 1 will apply to this problem, resulting
in the polynomial solution

u (x, t) = q (x)
tk

k!
+

1
k!

∞∑
m=1

Lmq (x) tm`+k∏m
j=1 B (k + j`)

(8.4)

=
(ν + k/`)!

k!

∞∑
m=0

Lmq (x) tm`+k

`m` (ν + m + k/`)!
,(8.5)

provided only that each power Lmq is a polynomial, vanishing identically
for m sufficiently large.

We specialize to the case

q (x) = xβ = x1
β1x2

β2 · · ·xn
βn ,



BESSEL OPERATORS 23

with β a multi-index in Rn, and give conditions under which indeed Theorem
1 applies. We assume B and each Ci has no zero order term, and that no
root of B is a positive integral multiple of `. Since (3.19) holds with k = 0,
our Cauchy condition is

(8.6)
∂iu (x, 0)

∂ti
=
{

xβ , i = 0
0 , 1 ≤ i < ` .

We assume further that there are nonnegative integers {γi} such that

βi = γisi , 1 ≤ i ≤ n .

Then Ci (0) = 0 for each i, and iteration of (8.1) shows that, for any positive
integer J ,

(8.7) Ci
J
(
xi

βi

)
= Ci

J (xi
γisi) = xi

(γi−J)si

J−1∏
j=0

Ci (γisi − jsi) .

Thus, J > γi implies Ci
J
(
xi

βi
)

= 0. This argument shows that, for any
multi-index α in Rn, Cα

(
xβ
)

is a multinomial and Cα
(
xβ
)

= 0 unless α ≤
γ = (γ1, γ2, · · · , γn). The analogues of (4.4) and (4.7) in this situation are

L =
I∑

k=1

akCαk
, Lm =

∑
|σ|=m

m!
σ!

aσCα̂·σ .

We substitute into (8.5), with k = 0, and obtain for the solution of problem
(8.2), (8.6), with

β = (γ1s1, γ2s2, · · · , γnsn) ,

the solution

pβ (x, t) = ν!
∞∑

m=0

Lm
(
xβ
)
tm`

`m` (ν + m)!
(8.8)

= ν!
∑

α̂·σ≤γ

t`|σ|

``|σ| (ν + |σ|)!
|σ|!
σ!

aσCα̂·σ
(
xβ
)

.(8.9)

The last sum is over multi-indices σ in RI . As L has no zero order term,
this sum has only a finite number of terms, and pβ is a polynomial.

Example 9. Bragg and Dettman [4] studied polynomial solutions of

(8.10)
(

∂2

∂t2
+

2b + 1
t

∂

∂t

)
u (x, t) =

n∑
i=1

εi

(
∂2

∂xi
2

+
2ci + 1

xi

∂

∂xi

)
u (x, t) ,

(8.11) u (x, 0) = xβ ,
∂u (x, 0)

∂t
= 0 ,

where β has the special form

β = 2γ = (2γ1, 2γ2, · · · , 2γn)
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for some other multi-index γ. They required that each εi be either +1 or −1,
but we stipulate only that each is a nonzero complex number. We assume
b and each ci are complex numbers, but that none of these quantities is a
negative integer. For the operator on the left of (8.10) we have

B =
∂2

∂t2
+

2b + 1
t

∂

∂t
, B (z) = z (z + 2b) , ν = (0, b) .

The operator on the right of (8.10) can be written as

(8.12) L =
n∑

i=1

εiCi ,

where, for 1 ≤ i ≤ n,

(8.13) Ci =
∂2

∂xi
2

+
2ci + 1

xi

∂

∂xi
, Ci (z) = z (z + 2ci) , µi = (0, ci) .

As no root of B is a positive integral multiple of ` (` = 2), and each Ci has
no zero order term, the preceding analysis applies. From (8.12) we see that
the vector α̂ of multi-indices and vector a of coefficients are

(8.14) α̂ = (e1, e2, · · · , en) , a = ε := (ε1, ε2, · · · , εn) ,

where ei denotes the i-th unit multi-index. For σ a multi-index in Rn we
have α̂ · σ = σ. We substitute these quantities into (8.9) and obtain as our
polynomial solution of (8.10) – (8.11) the function

(8.15) pβ (x, t) = ν!
∑
σ≤γ

t`|σ|

``|σ| (ν + |σ|)!
|σ|!
σ!

εσCσ
(
xβ
)

.

Now, from (8.7) and (8.13) we have, for any multi-index σ in Rn with σ ≤ γ,

Ci
σi

(
xi

βi

)
= xi

2(γi−σi)
σi−1∏
j=0

(2γi − 2j) (2γi − 2j + 2ci)

= xi
2(γi−σi)22σi

γi!
(γi − σi)!

(γi + ci)!
(γi + ci − σi)!

,

and therefore

Cσ
(
xβ
)

= x2(γ−σ)22|σ| γ!
(γ − σ)!

(γ + c)!
(γ + c− σ)!

,

where we set c = (c1, . . . , cn). Substituting this expression into (8.15) yields

(8.16) pβ (x, t) = ν! (γ + c)!
∑
σ≤γ

(
γ

σ

)
22|σ| |σ|! εσx2(γ−σ)t`|σ|

``|σ| (ν + |σ|)! (γ + c− σ)!
.

Finally, setting ` = 2 and ν = (0, b) we arrive at the representation

pβ (x, t) = b! (γ + c)!
∑
σ≤γ

(
γ

σ

)
εσx2(γ−σ)t2|σ|

(b + |σ|)! (γ + c− σ)!

as our polynomial solution of (8.10) – (8.11), where β = 2γ.
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Example 10. We consider the Cauchy problem

(8.17)
∂

∂t
u (x, t) =

n∑
i=1

εi

(
∂2

∂xi
2

+
2ci + 1

xi

∂

∂xi

)
u (x, t) ,

(8.18) u (x, 0) = xβ (β = 2γ) .

Haimo [11] studied polynomial solutions of this problem in the case εi = 1
for each i. We assume only that each εi is a nonzero complex number. For
the operator on the left of (8.17) we have

B =
∂

∂t
, B (z) = z , ν = 0 .

The analysis of this problem is exactly like that in Example 9, except that in
(8.16) we now set ` = 1 and ν = 0 to obtain the polynomial solution

pβ (x, t) = (γ + c)!
∑
σ≤γ

(
γ

σ

)
εσx2(γ−σ) (4t)|σ|

(γ + c− σ)!
.
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