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Abstract:  MATLAB®, an acronym for “MATrix LABoratory”, is the most extensively used mathematical 
software in the general sciences.   Other software packages, such as Maple and Mathematica are also popular, but 
more so in mathematics departments than in other fields.   The latter two software packages work symbolically, 
whereas as MATLAB, in its default mode, works in floating point arithmetic, which is much faster for performing 
computations with sufficient accuracy for most applications.   For instances where symbolic functionality is 
required, MATLAB offers access to the Maple kernel (which is built in), and thus can offer the best of both worlds.   
With its superb graphics and user-friendly interface, MATLAB is an ideal software to enhance university 
mathematics courses.  Indeed, because of its wide use in industry and the research sciences, a university education 
in mathematics without MATLAB could pose a serious disadvantage to a student’s potential for landing suitable 
employment.     
 
We will discuss the implementation of MATLAB into a variety of courses in the university curriculum, spanning 
from individual use by a single faculty member to full-scale adaptation by a mathematics department in its 
programs.  After our general implementation summary, we will present a detailed example of incorporating 
MATLAB in the solution of a family of problems concerning air travel logistics that could be presented in courses 
ranging from the precalculus-level all the way up through upper-level mathematics courses (depending on the 
degrees of detail and analysis that are presented).   Our focus is primarily geared to undergraduate curricula.   

 
 
  
SECTION 1:  HOW I BEGAN TO WORK MATLAB® INTO MY COURSES 
 
The story of how I started using MATLAB in my courses is somewhat atypical, and can perhaps serve as 
motivation for those having hesitations on making such a transition.   My doctoral research was in pure 
mathematical analysis and at my first post at the University of Hawaii, I continued with my pure 
mathematical research and was teaching math courses governed by departmental syllabi that were quite 
traditional.  There were no specific technology requirements, but instructors could use it at there own 
discretion, as long as there was time to cover the required topics.  For many courses, the syllabi were too 
ambitious to allow much digression into technology.    I was learning that showing the students interesting 
applications of the theory was a most effective motivator for them to appreciate (and thus more thoroughly 
study) the mathematical theories and concepts being presented.  I thus began planning my lessons to 
include an increased emphasis on applications, while still covering all of the theory.  I began using the 
Maple® and Mathematica® software for some research inquiries as well as in teaching demos.   
 
  I subsequently found an interesting challenge at the University of Guam when they were looking for a 
new faculty member who would be primarily responsible for teaching their numerical and applied 
mathematics courses.  Ordinarily such positions are filled by candidates who completed their doctoral work 
in such a field, so I was eager to take on this exciting opportunity.  The only problem was that the software 
they were using at the time was MATLAB, with which I had no experience.  My initial impression was a 
bit negative on using this software over one of its symbolic counterparts (like Maple or Mathematica).  This 
impression was partially fostered from the attitudes that were widely prevailing among many pure 
mathematical circles that symbolic software (like Maple or Mathematica) were the ONLY real tools that 
should be used for mathematical work.  Well, my new career thus got off to a rough and busy start, having 
to quickly become adept with this new computing platform.  As I began to learn and use MATLAB, 



however, I became increasingly impressed with its speed, power, ease of use, and state-of-the-art graphical 
capabilities.  I also came to understand why MATLAB is the software of choice in nearly all of the 
scientific fields.  Rather than using symbolic arithmetic (in its default setting), which works in expandable 
precision to keep answers exact, MATLAB works in a floating point arithmetic  that limits the size and 
number of digits in its calculations.  These limits conform to meet the rigors of the IEEE1 double precision 
standards, which are sufficient for most practical purposes.  After all, if we are computing, say a minimum 
eigenvector of a certain (symmetric) matrix, is it really necessary to know the number, say, 150 digits?   
Pure mathematicians often scoff at anything less than exactness, but in practical situations, such objections 
are often purely academic.  In any case, MATLAB does have symbolic functionality available for instances 
were one (feels) it is necessary.  The basic symbolic functionality is included in the Student Version of 
MATLAB, and it is available with the so-called Symbolic Toolbox add-on to the professional version.  The 
Symbolic Toolbox gives MATLAB users access to the Maple kernel.   Although it is tempting to work 
symbolically, the trade-off is that calculations are much more expensive (time-consuming).   Indeed, in my 
first MATLAB-based textbook [Sta-05a] on the subject of numerical ordinary and partial differential 
equations, although symbolic functionality is discussed, its use was extremely minimal, and the text could 
be made essentially independent of it.    
 
  The many benefits and versatility of MATLAB began to motivate me to use it in more than just the 
originally intended classes in numerical and applied mathematics.  I began incorporating it, to various 
degrees, in most all of my math classes.  This semester, for example, I am making extensive use of 
MATLAB for the first time in a course in abstract algebra.   Students these days are inkling to use their 
computers in any way possible to help them learn.  I am finding that the incorporation of MATLAB brings 
my courses to higher levels in that it enables students to perform more independent research that would 
otherwise not have been feasible at the undergraduate level.   
 
  
SECTION 2:  HOW CAN YOU IMPLEMENT MATLAB INTO YOUR COURSES? 
 
Many math departments are gravitating towards including a MATLAB component in their curriculum.  
Once this is done, courses can be organized in an efficient manner with some core MATLAB-based courses 
giving students preparation to jump into more advanced courses with a solid MATLAB foundation behind 
them.   If you are in such a department, this section may be skipped.    The next best thing would be a 
department with other faculty already using MATLAB in their courses.  This would be a middle-ground 
that could eventually lead up to the first sort of curriculum structure.  If you are in such a department, your 
colleagues can be valuable resources not only to consult with on their experiences, but to begin to organize 
sequences of math courses that build up and nicely complement MATLAB implementation; such courses 
could, for example, be made part of an “Applied Mathematics Track” that would constitute one of several 
tracks in which students could earn a bachelors degree in mathematics.   Graduate programs are often more 
specialized, making it easier to build around a particular computing platform; this is why our focus is 
geared towards undergraduate curricula.   
 
  Now we are left with the remaining situations where no one else in your department is currently using 
MATLAB, and your department may or may not even have a license for it.  Through discussions with other 
mathematics department chairs and administrators, I am finding that most will support such innovative 
goals in teaching relating to bringing a high-power computing platform (like MATLAB) into the 
curriculum.   What would be required, initially, would be a classroom license for a sufficient number of 
computers in a computer lab.  These licenses are quite affordable (go to www.mathworks.com, the 
website for MathWorks, the company that sells MATLAB, for more detailed information) and include 
permission for all instructors to install the software on their personal computers to use (only) for class 
preparations.  Additionally, a few additional licenses (a minimum of, say, four or five) would need to be 
purchased for the student computer lab.  These licenses are more expensive, but can be set up on a central 
server that would allow any machine to run it as long at the maximum number of licenses is not exceeded 

                                                 
1 IEEE is the acronym for the Institute for Electrical and Electronics Engineers, Inc., a nonprofit professional association of more than 
350,000 individual members in 150 countries.  Their standards were carefully developed to help avoid some problems and 
incompatibilities with earlier floating point systems.    



at any given time.  Finally, you should instruct your student book store to order some copies of the Student 
Version of MATLAB, as many students will prefer to use it on their own computers (these licenses are kept 
affordable, last time I checked they ran under US$100).2    You might first begin using MATLAB in an 
easy-to-use course such as linear algebra (it is great with matrices), or numerical analysis.   
 
  In the isolated use of any technology in any (mathematics) course, one must also address the trade-off 
with time needed to introduce the technology being taken from the limited time of the semester (or quarter).  
I have faced this issue myself in an assortment of courses where I had wanted to use MATLAB, but some 
(or all) of the students had no MATLAB (and some no programming) experience.  Personally, I feel that 
when I teach my students MATLAB, it is worthwhile to teach them some at least some of the associated 
rudimentary programming as well.  I can usually give such students an adequate preparation in two weeks 
of class instruction.  The exact material (and homework exercises) I cover, will vary with the course, but I 
always cover at least the following core material from [Sta-05b]3 :  Chapter 1 (MATLAB Basics), Chapter 
3 (Introduction to M-files 4 ), Chapter 4 (Programming in MATLAB), Sections 5.1-2 (Floating Point 
Arithmetic) Sections 7.1, 3, and 4 (Matrices and Linear Systems), and Appendix B (Symbolic 
Computations). 5    After this, by carefully including computational problems in the assignments, the 
students will continue to become more adept with MATLAB while they use it to help learn the material of 
the course proper.  Many of MATLAB’s built-in M-files are open source, so students can look at these to 
continue to learn efficient programming ideas, and modify existing programs to better meet their needs.   
 
  I should add that since MATLAB has such a wide variety of built-in functions, it is also possible to use it 
without having the students do any programming (some scientists use it in this way as well).  Some 
(MATLAB experienced) instructors will write MATLAB programs themselves specifically for the course 
and provide them to the students as learning tools, and many will share them with other interested 
instructors and/or students.  Web searches on free MATLAB material will reveal the vast amounts of 
programs and documents that are available.  A good example of this is Rice University Professor John 
Polking’s M-files pplane and dfield.  Over the past decade, he has continually developed these user-
friendly, high-level, graphically enhanced M-files for analyzing phase-planes and direction fields in 
ordinary differential equations.  He makes them freely available for educational purposes, along with 
instructions for their use (on his web site).  He has also co-written a supplementary book [Pol-03] for 
standard courses in ordinary differential equations that elaborates on their use, as well as many of 
MATLAB’s built-in functions for solving ordinary differential equations.    MathWorks maintains a 
website [Mat-05] with descriptions of an ever-expanding list of over 800 textbooks that use the MATLAB 
software to various degrees in an assortment of subjects. 
 
  Currently I am using MATLAB, to various extents, in most all of the courses that I am teaching.  The 
usage of MATLAB in my courses ranges from minimal (e.g., an occasional in-class demo for a lower-level 
class in finite mathematics, on, say, the shipping logistics material in Section 3, or on cryptology), to 
higher-level involvement requiring students to write programs to solve difficult problems in the class.  
MATLAB proficiency also makes it easier to get students involved in capstone or interdisciplinary 
research/dissertation projects.  Presently, for example, I have a student in my discrete structures class 
writing a paper on ant colony methods in combinatorial optimization (these can serve as effective heuristics 
in difficult problems such as the traveling salesman and vehicle routing problems).  I have also made 
extensive use of MATLAB in an abstract algebra course.  Surprisingly, even in such a symbolic and 
abstract subject, MATLAB’s floating point system (restricted to integer arithmetic) is impressively 
adequate for all but the most technical applications (e.g., in professional-level security cryptography).   The 
abstract concepts can be made more concrete with the resources of MATLAB.  Long computations, that 
would have otherwise been unfeasible, can be carried out to glean greater insights into the subject.  For 
example, the paper  [Mak-02] shows many interesting ways to experiment with a wide variety of matrix 
groups and rings using MATLAB.   
 
                                                 
2 MathWorks will even send instructors interested in using MATLAB a complimentary copy of the Student Version; see their website 
for details.  
3 [Sta-05b] contains the general core introduction to MATLAB culled from my larger numerical analysis textbook [Sta-05a].  
4 M-files are simply programs written for MATLAB; the programming language of MATLAB is similar to the C-family.   
5 Much of this material is of a tutorial nature, and so can be assigned as homework.   



  Perhaps one of the most important reasons to learn a software like MATLAB is that so many (in fact, 
most) interesting mathematical problems do not have an exact analytical solution, or it is not feasible to 
find one.  In such cases, simulations can be used to obtain approximate answers to any degree of accuracy.  
I have used simulations extensively in an upper-level probability course, and have also recently taught a 
MATLAB-based special topics course in simulation using the (non-MATLAB) textbook [Ros-02].  Even 
when there is an exact answer that the student needs to find (in a homework problem, say), a student (or 
teacher) may get stuck or go in the wrong direction with a tricky problem, but a simple simulation can point 
them in the direction of the correct answer.  Simulations provide an excellent example of the superiority of 
floating point arithmetic for certain computational tasks.  Results improve with running large numbers of 
trials, and floating point arithmetic gives us this speed whereas symbolic computations would proceed at 
much slower pace, keeping very exact track of all of the incidental quantities.  Sometimes a program can 
model such a complicated natural phenomena that it is helpful to have a graphically enhanced program to 
check that things are working as planned.  MATLAB’s superb graphics capabilities allow for this.  It is 
important to realize, however, that graphical output also eats up a lot of resources, so that a good scheme 
might be to first write a graphically enhanced program (for a difficult model), use it to check and 
demonstrate the accuracy of the model, and then disable the graphics so as to be able to do longer and more 
repeated runs of the program.  Such a project was carried out in [Sta-04], where a graphically enhanced 
MATLAB program was developed to analyze the most effective way to control a traffic intersection.       
 
 
 
SECTION 3:  A PARTICULAR EXAMPLE OF A FAMILY OF PROBLEMS 
 
In this section we present details of an  example of some  
problems relating to the logistics of air shipping.  Many 
of the concepts we will introduce have applications in 
the tourism and travel industry.    Most of the ideas will 
be motivated by a series of practical questions.  The 
basic prerequisites are minimal, so the material can be 
presented in wide variety of courses.   Suppose that a 
Pacific Rim air shipping company has connecting flights 
between five cities as shown in Figure 1.  The ideas will 
work for networks of any size, but such a small one will 
allow us to verify the concepts geometrically. 
 
  The information contained in such a network can be represented using a 5 5×  incidence matrix A, where 
each of the entries of A is either 0 or 1 as determined by the following rule:   
 

1, if there is a direct flight from city #  to city #
0, if there is no direct flight from city #  to city #ij

i j
i ja 




= .  

 
Thus we obtain the incidence matrix A: 

#1 #2 #3 #4 #5

#1 0 1 0 0 1
#2 0 0 1 0 0
#3 0 0 0 1 1
# 4 1 0 0 0 0
#5 1 0 0 0 0

A

⇓ ⇓ ⇓ ⇓ ⇓
⇒ 

 ⇒ 
 = ⇒
 

⇒  
 ⇒  

 

 
Such a spreadsheet can easily be queried as to the existence or nonexistence of a direct flight between any 
distinct pair of cites.  Of course, the graph could tell us the same information, perhaps even more easily. 
But for a large network, as for example the network of all of FedEx’s airport hubs, such a diagram would 

 
FIGURE 1:  A small shipping network.   
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be a dizzying mess, and the incidence matrix would be the best way to store and access the information.  If 
this was the only novelty of incidence matrices, they would not be worth discussing in this section.  It turns 
out that the square of the incidence matrix tells us something quite interesting about the network (and thus 
furnishes a great answer to the common question students ask when first learning how to multiply matrices:  
“Why would anyone invent such a complicated way to do it?”) 
 
QUESTION 1:  What do the entries of the matrix 2A  tell us about the shipping network? 
 
Answer:  The (i,j) entry of 2A equals the number of ways that one can fly from (row) city #i to (column) 
city #j using exactly two flights.  More generally,  the entries of  MA  (M a positive integer) count the 
number of ways to go from row city to column city using exactly M flights.   
 
  The proof of these facts is not hard (using the definition of matrix multiplication and induction), and 
would make a suitable exercise in a linear algebra course, but for a lower-level class, the result can just be 
stated and demonstrated, as we do next.    
 
For the network of Figure 1, and its incidence matrix A, we compute: 2 ,B A=  and 3 ,C A=  and  interpret 
the entries 31 12 12, , and .b b c   
 
Using MATLAB, we enter the incidence matrix A, and compute B, C, and D. 
 
>> A=[0 1 0 0 1; 0 0 1 0 0;0 0 0 1 1;1 0 0 0 0;1 0 0 0 0]; 
>> B=A^2,  C=A^3 
 

B=      1     0     1     0     0 
     0     0     0     1     1 
     2     0     0     0     0 
     0     1     0     0     1 
     0     1     0     0     1 
 

C=      0     1     0     1     2 
     2     0     0     0     0 
     0     2     0     0     2 
     1     0     1     0     0 
     1     0     1     0     0 
 

 
  Since 31 2,b =  we see that there are 2 ways to go from City #3 (Honolulu) to City #1 (Tokyo)  using 
exactly two flights.  From Figure 1, we see that these two routes are:  #3 #5 #1 (with a stop in Guam) 
and #3 #4 #1 (with  a stop in Manila).  Similarly, 12 0b =  means that there is no way to go from City #1 
(Tokyo) to City #2 (San Francisco) using exactly two flights (check Figure 1 to convince yourself), 
although there is a direct flight.  The entry 12 1c = indicates that there is precisely one route that goes from 
City #1 (Tokyo) to City #2 (San Francisco) and that uses exactly three flights.  The reader can verify using 
Figure 1 that this unique route is: 
 

 #1(Tokyo) #5(Guam) #1(Tokyo) #2(San Francisco), 
 

demonstrating that these matrices count literally all possibilities.  Of course, programs can be easily 
designed to weed out such inefficient routes.   
 
QUESTION 2:  The owner of the (or any) shipping network would like to know the worst (maximum) 
number of flights we would actually need to be able to ship from any city to any other city.  We define this 
number (a positive integer) to be the worst-case-scenario number of the directed network.  How can this 
be computed?  
 
In case no student raises their hands to offer an answer, ask the following follow-up question that should 
lead them in the right direction.   
 
QUESTION 3:  What do the entries of the matrix 2D A A= +  tell us in terms of the shipping network? 
 



Answer:  Since the entries of D simply sum the corresponding entries of A (so the number of direct flights) 
and 2A  (the number of 2-segment flights), the entries of D thus tell us the number of ways to go from row 
city to column city using either one or two flights, or at most two flights.   
 
For example, we compute 2 ,D A A= +  and then interpret 31.d  
>> D=A+B 

D=      1     1     1     0     1 
     0     0     1     1     1 
     2     0     0     1     1 
     1     1     0     0     1 
     1     1     0     0     1 
 

 
Here, 31 31 31d a b= + =  0 (no direct flights) + 2 (2 two-flight routes indicated above) = 2.   
 
By the same token, it follows that the entries of the matrix 2 MS A A A= + + +"  indicate the number of 
ways to go from the row city to the column city using at most M flights.  This leads to the following 
algorithm for answering Question 2, which is easily programmed into an M-file.      
 
 
Algorithm:   Computation of Worst-Case-Scenario Number of a Directed Network:6 
 
Step 1:  Form the incidence matrix A.  If all nondiagonal entries are 1, this means there is a direct flight 
between any two pairs of cities and the worst-case-scenario number of the network is 1.  Otherwise, move 
on to Step 2.   
Step 2:  (Iterative Step)  Continue adding increasing powers of A:  2 2 3, ,A A A A A+ + + …  until we 
obtain a matrix that has no nonzero entries except possibly on the main diagonal.  The resulting exponent 
M of the last power added will be the worst-case-scenario number.  
 
 
  We point out that since the zeroth power of (any square) matrix A,  0 ,A  is defined to be the identity 
matrix I,  we can extend the network interpretation of powers of the incidence matrix A to include the 
zeroth power.   (With zero flights, we can only go from a city to itself.)     With this extended interpretation, 
the above algorithm can be slightly simplified if we include the zeroth power of A in the sums; this allows 
us to stop as soon as ALL of the matrix entries are zero.   
 
  As an example, let’s now compute the worst-case-scenario number of the directed network of Figure 1.  
We have already computed A  and 2A A+ ; neither satisfies the nonzero requirements, so we continue with 
the above algorithm: 
 
>> A+A^2+A^3, ans+A^4 

 
ans = 
 

     1     2     1     1     3 
     2     0     1     1     1 
     2     2     0     1     3 
     2     1     1     0     1 
     2     1     1     0     1 
 

 
ans = 
 

     4     2     2     1     3 
     2     2     1     1     3 
     4     2     2     1     3 
     2     2     1     1     3 
     2     2     1     1     3 
 

 
Thus we find the worst-case-scenario number of the network is 4.   From the second-to-last matrix, we see 
that there is only one ordered pair of cities (#5  #4) that would need a full four flights since the row 5 
column 4 entry is the only nondiagonal zero entry.  The reader can verify with Figure 1 that there is no way 
to fly from City #5 (Guam) to City #4 (Manila) using less than four flights in this network.   
 

                                                 
6 We assume that the network is connected, meaning that any city is reachable from any other city.  This assumption gives an upper 
bound of n – 1 for the worst-case-scenario number of an n-city network (Why?). 



QUESTION 4:   (a) The owner of the shipping company of Figure 1 would like to investigate the possibility 
of adding a new flight to the existing schedule (one new arrow) in such a way that the worst-case-scenario 
number could be brought down as much as possible.  Can the worst-case-scenario number be brought down 
in this way and if so what would be the possible flights to add that would bring it down as much as possible?  
(b)  Answer the same question for two new flights. 
 
Answer:  Part (a):  There is a simple strategy here.   Adding a single new flight to the network simply 
corresponds to a new incidence matrix with one of the previous zero nondiagonal entries being changed to 
one.  We can simply compute the new worst-case-scenario numbers of all such modified incidence matrices 
and keep track of those that are less than 4 (the worst-case-scenario number of the original network that was 
computed in the preceding example).  The ones that are as low as possible are the ones that we are interested 
in.  So that we can solve not only this question, but the same one on any network,  it is useful to write a 
MATLAB program to accomplish this task.   We apply such an (easily written) program to the incidence 
matrix under consideration. 
 
(MATLAB input:)  >> AddOneFlt(A) 
 
(MATLAB output:)   
By adding one new flight, the worst-case-scenario number of the network   
can be reduced from 4 to 3. The segments that will achieve this  
reduction are stored as the output matrix.  
 

ans = 
 
 

     1     3 
     1     4 
     2     4 
     5     2 
     5     3 
     5     4 

 
Thus, the worst-case-scenario number can be reduced to (as low as) 3 by adding one new link and there are 
six ways to achieve this reduction.  These six links are listed above.  For example, the first one:  [1 3] 
corresponds to a new direct flight being added from City #1 (Tokyo) to City #3 (Honolulu).   
 
Part (b):  The strategy here is similar.  Adding two new flights corresponds to changing two zero 
nondiagonal entries of the incidence matrix to ones.  The worst-case-scenario numbers now need to be 
checked.  We need only record the ones whose worst-case-scenario numbers are less than 3 (the lowest it 
could get from using one new flight).  An M-file can be written in a similar fashion to that used above, but 
now we will need four nested “for loops” to run through all of the possible ways of adding two new flights 
(each new flight requires two indices).  Once this is done, and the reader runs it on the data of this problem, 
he/she will find that the worst-case-scenario number cannot be reduced below 3 for any two new flights that 
are added.   
 
QUESTION 5:   Are the above programs practical for general (larger) network routing problems?   
 
Answer:  The simplest way to start to understand this question is to run the programs with larger networks.  
What happens if we try to answer the above questions for the 23-city network shown in Figure 2?   
 
  Running the (MATLAB) programs on a PC, we would promptly find the worst-case-scenario number to be 
eight and that by adding one new flight it could be lowered to as low as seven (in 63 different ways).  To 
find that with two new flights it could be further lowered to six (in 22 different ways), the program starts to 
take a while to execute, and you would probably want to leave it running while you went out to lunch.  If 
you tried to find out how much lower the worst-case-scenario number could be brought down to using three 
new flights, you would need to let the computer work over a long weekend.  The programs for adding new 
flights mentioned above, although theoretically sound, are rather brute-force in nature since they simply 
recomputed the worst-case-scenario number for all of the new possibilities.  It thus becomes important to 
analyze our algorithms and make them as efficient and elegant as possible. 
 
  These issues lead us to the very important concept of complexity of an algorithm.  Complexity measures 
the approximate size of the amount of computation needed to run an algorithm with input size n, and is 
usually expressed in  the  form of  a big-O estimate,  ( ( )),O f n  where  f(n)  is a “simple” function of n.  To  
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FIGURE 2:  A moderately-sized shipping network.   
 
 
say an algorithm works in ( ( ))-timeO f n   means that  with an input of size  n,  it will take less than ( )C f n⋅  
logical  (or arithmetic)  operations,  where  C  is some  positive  constant.   Ideally,  we  seek  big-O 
estimates that are sharp in the sense that examples of the problem (with input size n) can be found that will 
take more than  ( )c f n⋅  logical operations, for another positive constant c (and thus no smaller function can 
be used in the big-O estimate).  An algorithm is said to run in polynomial time if it admits a big-O estimate 
of the form ( )pO n  for some positive integer p.  Polynomial time algorithms are considered to be good 
algorithms, but, of course their runtimes can increase significantly for larger exponents p, as well as a large 
value of the (invisible) constant C.  Each of the algorithms mentioned for the above shipping route problems 
run in polynomial time, but some of them are still too slow for even moderately sized networks.  (The 
exponents p increase quickly with the number of new flights we look into adding to the network.)   Many 
important problems (e.g., the traveling salesman problem) do not yet have algorithms that can even run in 
polynomial time.   The biggest single issue in algorithms is to design them to function as efficiently as 
possible.   For an advanced class that has learned to program in MATLAB, one could end this lesson on 
network routing with a (difficult) question of the following sort (ideally given as an extra-credit problem): 
 
QUESTION 6:   Assume that the following costs (for shipping a 100 lb parcel) are associated with flights in 
the the 23-city network of Figure 2:  Flights within any of the three regions (Asia-Pacific, United States, and 
Europe) cost $100.  Flights from one region to an adjacent region (i.e., Asia-Pacific to/from US, or US 
to/from Europe) cost $200 and the Madrid to Sidney flight costs $300.  The only exceptions are that flights 
between Guam and Honolulu or Guam and Taipei cost $300.  Also, for each such shipment, the company 
must pay a $2 airport tax to each airport used.  Using this information, create a MATLAB M-file:  [price 
routes] = LowestPrice(i,j) The two input variables, i and j, denote the numbers of the origin 
and destination cities, respectively, for shipping a parcel.  The first output variable, price, will be the 
lowest possible price for shipping the parcel, and the second output variable, routes, will be a matrix of 
the corresponding routes to achieve this lowest price (each such route will have the same number of 
fights−Why?).  For example, if you run LowestPrice(19,22),  the output should be price = 206, and 



routes = [19 21 22], indicating that the cheapest way to ship from London to Prague would be to do 
through Rome and the cost for such a shipment (for one standard parcel) would be $206 (= 2 $100× (airfares) 
+ 3 $2× (taxes)).  Your program should be able to run in less than 5 seconds (on any decent computer) for 
any pair of inputs. 
 
 
  The simple price structure in this problem allows for a variety of creative thinking and solutions.  Initially, 
this problem might seem much more complex than that of adding one or two good flights.  It turns out, 
however, that a very efficient algorithm exists for finding lowest prices in any such network.  This algorithm 
was discovered by Edsger W. Dijkstra (1930−) 7, a Dutch computer scientist in the 1950s.  Dijkstra’s 
algorithm runs in 2( )-time,O n   where n is the number of cities.  It can be geometrically described as follows:  
Staring at the origin city #i, we release a green fluid (representing cost)  that flows along unused edges at a 
rate of $1/hour.  This continues until all edges have been saturated (assuming the network is connected).  
The minimum cost of getting from city #i to ANY other city #j is simply the time it takes for the green fluid 
to reach vertex #j.  Shortest paths can be kept track of in a straightforward fashion (by tracking predecessor 
cities).  Dijkstra’s algorithm remains one of the best for determining minimum costs in general network 
problems.   
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7  Edsger W. Dijkstra (1930−) is a Dutch computer scientist who studied physics at the University of Amsterdam where he obtained all 
of his university education and his PhD in 1959.  He became very interested in computer programming during his studies well before 
this was a recognizable line of work.  In fact, in 1957, when he put computer programming as his profession in his marriage license, 
the authorities would not accept it.  (He was still able to get married, but changed his profession to physicist.)  He became a professor 
of mathematics at the Eindhoven University of Technology (in the Netherlands) in 1962 until 1973 when he moved to become a 
research fellow for the Burrows Corp.  In 1984, he moved to the US to become a professor of computer science at the University of 
Texas at Austin, where he remains today.   
 


