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Abstract

We generalize the heat polynomials for the heat equation to more general
partial differential equations, of higher order with respect to both the time
variable and the space variables. Whereas the heat equation requires only
one family of polynomials, for an equation of the `-th order with respect to
time we introduce ` families of polynomials. These families correspond to
the ` initial conditions specified by the Cauchy problem.



1 Introduction

The classical heat polynomials {pβ (x, t)} are polynomial solutions of the
heat equation,

∂u (x, t)
∂t

= ∆nu (x, t) ,

satisfying the initial condition

pβ (x, 0) = xβ . (1)

These polynomials appear in early work of Appell [1] on the heat equation,
and were later investigated in detail by Rosenbloom and Widder [28, 31, 32,
33]. The polynomials are particularly useful in solving the Cauchy problem

∂u (x, t)
∂t

= ∆u (x, t) , u (x, 0) = f (x) . (2)

Rosenbloom and Widder showed that, if f (x) obeys certain growth con-
ditions and has the Taylor series expansion

f (x) =
∑
β

cβxβ ,

then a solution of (2) is given by the series

u (x, t) =
∑
β

cβpβ (x, t) .

In [33] Widder further demonstrated, with use of pointwise bounds on the
heat polynomials, that a solution of the heat equation can be expanded in a
series of these polynomials in the widest strip where it enjoys the Huygens
property. Colton in [6] used these same bounds to demonstrate that the
heat polynomials form a complete family of solutions of the heat equation
in certain domains. In [17] Hile and Mawata used heat polynomial bounds
to help describe the behaviour of the heat operator as a mapping between
weighted Sobolev spaces in Rn+1.

Here we present analogues of heat polynomials for an equation involving
a higher order time derivative,

∂`u (x, t)
∂t`

=
∑
α

aα∂α
x u (x, t) , (3)
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where ` may be any positive integer. Cauchy data for this equation involves
` initial conditions,

∂ku (x, 0)
∂tk

= fk (x) , 0 ≤ k < ` , (4)

and correspondingly we require k families of polynomials {pβ,k (x, t)}, 0 ≤
k < `. The k-th family of polynomial solutions of (3) solves the Cauchy
conditions

∂j

∂tj
pβ,k (x, 0) = δjkx

β =
{

xβ , if j = k ,
0 , if j 6= k and 0 ≤ j < ` .

It turns out that, if each fk in (4) has a Taylor expansion

fk (x) =
∑
β

cβ,kx
β ,

then under certain growth conditions a solution u of the Cauchy problem
(3) – (4) can be expressed as the superposition

u (x, t) =
`−1∑
k=0

∑
β

cβ,kpβ,k (x, t) . (5)

(As this latter development requires a rather lengthy and detailed derivation
of pointwise bounds on the polynomials {pβ}, we postpone it along with
other applications of these bounds for a later paper.)

There have been a number of generalizations of heat polynomials for
equations besides the heat equation. Kemnitz [23] presented such polyno-
mials for an equation in one space dimension,

∂u

∂t
=

∂ru

∂xr
(r ≥ 2) . (6)

Haimo and Markett [15, 16] studied polynomial solutions of a closely related
equation, the so-called higher order heat equation,

∂

∂t
u(x, t) = (−1)q+1 ∂2q

∂x2q
u(x, t) . (7)

When we specialize our equation (3) to the heat equation, or to (6) or to
(7), our polynomials become the heat polynomials, or the polynomials of
Kemnitz or of Haimo and Markett, respectively.
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The generalized heat equation, or radial heat equation,

∂u(r, t)
∂t

=
∂2u(r, t)

∂r2
+

2ν

r

∂u

∂r
, (8)

has been investigated by Bragg [2] and more extensively by Haimo [8, 9, 10,
12, 13, 14]. (In the case 2ν = n− 1 the right side of (8) is the n-dimensional
Laplace operator in radial coordinates.) Cholewinski and Haimo [5] studied
polynomial solutions of the equation

∂u(x, t)
∂t

= xuxx(x, t) + (α + 1− x) ux(x, t) ,

and in [11] Haimo did the same for an equation in n space variables,

∂u(x, t)
∂t

= ∆nu(x, t) +
n∑

i=1

2ν

xi

∂u(x, t)
∂xi

.

Fitouhi [7] extended the theory of heat polynomials to a slightly more general
version of (8),

ut(x, t) = uxx(x, t) +
(

2ν

x
+

B′(x)
B(x)

)
ux(x, t) ,

with B a suitable analytic function. As the coefficients of all these “gener-
alized heat equations” depend on the space variable x, our theory does not
directly apply to them.

Lo [24] presented analogues of the heat polynomials, called generalized
Helmholtz polynomials, for a perturbed heat equation in one space variable,

∂u

∂t
=

∂2u

∂x2
+ ε2 ∂2u

∂t2
. (9)

Lo’s polynomials have properties much like those of the ordinary heat poly-
nomials, and when ε = 0 they reduce to the heat polynomials. As (9) does
not quite fit into our format, likewise our theory does not apply to this
equation.

The present authors in [18, 19] established explicit formulas for polyno-
mial solutions {pβ}, satisfying the initial condition (1), of a general evolution
equation

∂u (x, t)
∂t

=
∑
α

aα (t) ∂α
x u (x, t) . (10)
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They also investigated properties of these polynomials, derived pointwise
upper bound estimates, and used these to solve Cauchy problems via series
expansions in terms of the polynomials.

There is an interesting body of work on the problem of determining all
polynomial solutions of systems of partial differential equations with con-
stant coefficients, as well as the dimensions of solution spaces of polynomials
of specified degree. For important papers and further bibliographical refer-
ences, see [20, 21, 22, 25, 26, 27, 30].

Another interesting application of the heat polynomials appears in the
work of L. R. Bragg and J. W. Dettman concerning transmutation operators.
(See [4] for a list of references.) For example, in [3] these authors demon-
strate that various polynomial solutions of elliptic and hyperbolic equations
can be obtained from the heat polynomials, and that these in turn can be
used to represent solutions of problems involving these equations.

The authors thank the referee for pointing out representation (34) for
our polynomials.

2 The Equation

Let L denote the linear differential operator, with constant coefficients {aα},

Lu =
∑
α

aα∂α
x u . (11)

Given a positive integer `, we consider the differential equation

∂`u

∂t`
= Lu . (12)

We consider solutions u = u (x, t) = u (x1, x2, · · · , xn, t) of this equation
defined for (x, t) ∈ Rn × R. Although in most applications u is real valued
and the coefficients {aα} are real, our analysis is equally valid for complex
valued u and complex {aα}; thus we allow this more general setting. We shall
refer to t as the “time variable” and to x as the “space variable”, although
this distinction is somewhat arbitrary as these physical interpretations do
not pertain to all equations. For multi-indices α = (α1, α2, · · · , αn) in Rn

we adopt the usual notation

|α| = α1 +α2 + · · ·+αn , α! = α1!α2! · · ·αn! , xα = xα1
1 xα2

2 · · ·xαn
n .

We let ∂α
x denote the “space derivative”

∂α
x =

∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

.
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We assume the summation in (11) is over only a finite number of multi-
indices α. At times it is convenient to number these multi-indices as α1, α2,
· · · , αI , and the corresponding coefficients {aα} as a1, a2, · · · , aI , so that L
may be written in the alternate formulation

Lu =
I∑

i=1

ai∂
αi

x u . (13)

3 The Function E

We will define generating functions for polynomial solutions of (12) in terms
of a more elementary function,

E (t, s; `, k) =
∞∑

m=0

t`m+ksm

(`m + k)!
. (14)

We view ` and k as parameters of this function, and t and s as the inde-
pendent variables. We restrict ` to belong to the set N of positive integers,
and k to the set N0 of nonnegative integers. We allow s to be any complex
number, although in most applications it will be real. In order to avoid
complex derivatives we restrict t to be real, although much of what we do is
equally valid if t is complex. It is clear that the power series (14) converges
for all values of (t, s, `, k) ∈ R × C × N × N0, representing a C∞ function
with respect to the variables t and s, and that termwise differentiation of all
orders with respect to t and/or s valid. The function E might be regarded
as somewhat of a generalized exponential function. Observe that

E (t, 1; 1, 0) = et , E (t, s; 1, 0) = est ,

E (t, 1; 2, 0) = cosh t , E (t, 1; 2, 1) = sinh t ,

E (t,−1; 2, 0) = cos t , E (t,−1; 2, 1) = sin t .

From (14) it follows that, for k = 1, 2, 3, · · · ,

∂

∂t
E (t, s; `, k) = E (t, s; `, k − 1) ,

∫ t

0
E (r, s; `, k − 1) dr = E (t, s; `, k) .

We are mainly interested in integral values of ` and k such that 0 ≤ k < `.
Writing (14) in the expanded form

E (t, s; `, k) =
[
tk

k!
+

t`+ks

(` + k)!
+

t2`+ks2

(2` + k)!
+

t3`+ks3

(3` + k)!
+ · · ·

]
,
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we determine readily that, for 0 ≤ k < `,

∂j

∂tj
E (0, s; `, k) =

{
1 , if j = k ,
0 , if j 6= k and 0 ≤ j < ` .

(15)

Moreover, also for 0 ≤ k < `,

∂`

∂t`
E (t, s; `, k) =

∞∑
m=1

t`m+k−`sm

(`m + k − `)!
=

∞∑
m=0

t`m+ksm+1

(`m + k)!
,

and thus

∂`

∂t`
E (t, s; `, k) = sE (t, s; `, k) , 0 ≤ k < ` . (16)

4 The Polynomials

It is useful to designate a “vector of coefficients”, associated with L and
more specifically with its alternate form (13),

a = (a1, a2, · · · , aI) , (17)

as well as an associated polynomial Q = Q (y), y ∈ Rn,

Q (y) =
∑
α

aαyα =
I∑

i=1

aiy
αi

. (18)

Given a positive integer `, we employ ` different “generating functions”
associated with the operator L. These are labelled as {Gk}, k = 0, 1, · · · , `−
1, and defined for (x, t, y) ∈ Rn × R× Rn according to

Gk (x, t, y) = ex·yE (t, Q (y) ; `, k) (19)

= ex·y
∞∑

m=0

t`m+kQ (y)m

(`m + k)!
(0 ≤ k < `) .

(It would perhaps be more precise to subscript G as G`,k, but to make the
notation less cluttered we regard ` as given and fixed.) The notation x · y
denotes the usual dot product in Rn. We recall that

ex·y =
∑

γ

xγyγ

γ!
, (20)
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with the summation over all multi-indices γ = (γ1, γ2, · · · , γn) in Rn.
We examine some properties of the generating functions {Gk}. An im-

mediate consequence of (19) is the pair of formulas, valid for 1 ≤ k < `,

∂

∂t
Gk (x, t, y) = Gk−1 (x, t, y) ,

∫ t

0
Gk−1 (x, r, y) dr = Gk (x, t, y) .

From (15) we infer, also for 0 ≤ k < `,

∂jGk (x, 0, y)
∂tj

=
{

ex·y , if j = k ,
0 , if j 6= k and 0 ≤ j < ` .

(21)

Moreover, from (16) and (19),

∂`

∂t`
Gk (x, t, y) = Q (y) Gk (x, t, y) =

∑
α

aα∂α
x Gk (x, t, y) ;

that is, for each fixed y in Rn,

∂`

∂t`
Gk (x, t, y) = LGk (x, t, y) , 0 ≤ k < ` . (22)

We shall write each Gk in the expanded form

Gk (x, t, y) =
∑
β

pβ,k (x, t)
yβ

β!
, (23)

where for each k = 0, 1, · · · , ` − 1, the collection {pβ,k (x, t)} is a family of
functions indexed by multi-indices β in Rn.

We recall the general multinomial formula,

(c1 + c2 + · · ·+ cI)
m =

∑
|σ|=m

m!
σ!

cσ , (24)

where c = (c1, c2, · · · , cI), σ = (σ1, σ2, · · · , σI), and the summation is over
all multi-indices σ in RI of magnitude m. With this formula, (18) leads to

Q (y)m =

(
I∑

i=1

aiy
αi

)m

=
∑
|σ|=m

m!
σ!

(
a1y

α1
, a2y

α2
, · · · , aIy

αI
)σ

=
∑
|σ|=m

m!
σ!

aσ1
1 aσ2

2 · · · aσn
n yσ1α1+σ2α2+···+σIαI

.

7



We define a “vector of multi-indices”

α =
(
α1, α2, · · · , αI

)
,

and introduce a “dot product”

α · σ = σ1α
1 + σ2α

2 + · · ·+ σIα
I . (25)

Then Q (y)m can be written more briefly as

Q (y)m =
∑
|σ|=m

m!
σ!

aσ yα·σ .

(Note that α ·σ is a multi-index in Rn.) Substitution of this expression into
(19), with use also of (20), gives

Gk (x, t, y) =
∑

γ

xγyγ

γ!

∞∑
m=0

t`m+k

(`m + k)!

∑
|σ|=m

m!
σ!

aσ yα·σ

=
∑

γ

∑
σ

xγyγ

γ!
t`|σ|+k

(` |σ|+ k)!
|σ|!aσyα·σ

σ!
, (26)

with the summation over all multi-indices γ in Rn and σ in RI .
We want to fully justify any rearrangements and termwise differentia-

tions of the double series (26) for Gk. We look at a compact region where
|x| , |y| , |t| ≤ M , with M ≥ 1. Applying estimates of the type |xα| ≤ |x||α|,
for each term of (26) we have the bound∣∣∣∣∣xγyγ

γ!
t`|σ|+k

(` |σ|+ k)!
|σ|!aσyα·σ

σ!

∣∣∣∣∣ ≤ M |γ|M |γ|

γ!
|σ|!

(` |σ|+ k)!
M `|σ|+k |a||σ| M |α·σ|

σ!
.

Let L denote the maximum order of any space derivative in (11), so that
|α| ≤ L for each α. Then

|α · σ| =
I∑

i=1

∣∣αi
∣∣σi ≤ L

I∑
i=1

σi = L |σ| , M |α·σ| ≤ ML|σ| .

We use also the crude estimate

|σ|!
(` |σ|+ k)!

≤ 1
k!

,
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along with the general formula

∑
β

r|β|

β!
= enr ,

valid for real numbers r with the sum over multi-indices β in Rn. We find
that (26) is majorized by

∑
γ

∑
σ

∣∣∣∣∣xγyγ

γ!
t`|σ|+k

(` |σ|+ k)!
|σ|!aσyα·σ

σ!

∣∣∣∣∣
≤ Mk

k!

∑
γ

M2|γ|

γ!

∑
σ

|a||σ| M `|σ|ML|σ|

σ!

≤ expM exp
(
nM2

)
exp

(
I |a|M `+L

)
.

Thus (26) converges absolutely and uniformly in any compact region con-
taining the variables x, t, and y.

With similar estimates we can verify that any differentiated series of
(26), of any order and with respect to any combination of components of the
variables x, t, y, likewise converges absolutely and uniformly in any compact
region. (Any differentiated series will be majorized by a series comparable to
an exponential series via the ratio test.) In particular, orders of summation
can be freely interchanged in (26), and termwise differentiation is legitimate.

Now we interchange orders of summation in (26), first summing outside
over powers yβ, as β = γ + α · σ ranges over all multi-indices in Rn, getting

Gk (x, t, y) =
∑
β

yβ
∑

γ+α·σ=β

|σ|!
σ!

aσxγt`|σ|+k

γ! (` |σ|+ k)!
. (27)

Comparing (27) with (23), we find that our formula for pβ,k is

pβ,k (x, t) = β!
∑

γ+α·σ=β

|σ|!
σ!

aσxγt`|σ|+k

γ! (` |σ|+ k)!
(0 ≤ k < `) . (28)

Given multi-indices α and β in Rn we say that α ≤ β provided that
αi ≤ βi for each i. The sum in (28) is over multi-indices γ in Rn and σ in
RI satisfying the condition γ + α · σ = β. But the only way this condition
is possible is that α · σ ≤ β and γ = β − α · σ, and for any such σ there
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is only one corresponding γ. Thus we may rewrite (28) in the equivalent
formulation

pβ,k (x, t) = β!
∑

α·σ≤β

|σ|!
σ!

aσxβ−α·σt`|σ|+k

(β − α · σ)! (` |σ|+ k)!
(0 ≤ k < `) , (29)

with the summation now taken over all multi-indices σ in RI such that
α · σ ≤ β.

As termwise differentiation is permissible, (22) and (23) give∑
β

∂`

∂t`
pβ,k (x, t)

yβ

β!
=

∂`

∂t`
Gk (x, t, y) = LGk (x, t, y) =

∑
β

Lpβ,k (x, t)
yβ

β!
.

Hence
∂`

∂t`
pβ,k (x, t) = Lpβ,k (x, t) . (30)

Also, from (23) and (21), if 0 ≤ k < ` then∑
β

[
∂j

∂tj
pβ,k (x, 0)

]
yβ

β!
=

∂jGk (x, 0, y)
∂tj

=

{
ex·y =

∑
β

xβyβ

β! , if j = k ,

0 , if j 6= k and 0 ≤ j < ` .

We conclude that, for 0 ≤ k < `,

∂j

∂tj
pβ,k (x, 0) =

{
xβ , if j = k ,
0 , if j 6= k and 0 ≤ j < ` .

(31)

As there are only a finite number of powers xγ with γ ≤ β, (28) shows
that pβ,k (x, t) is a polynomial in x when t is held fixed. If the operator
L of (11) contains a zero order term – that is, if some nonzero aα appears
corresponding to α = (0, · · · , 0) – then there will be an infinite number of
multi-indices σ in RI with α ·σ ≤ β. In this case the summations in (28) and
(29) will have an infinite number of terms. (A term σiα

i in (25) contributes
nothing to the sum if αi = (0, · · · , 0).) Thus, if L has a zero order term,
pβ,k (x, t) need not be a polynomial with respect to t. However, if L has no
zero order term then the number of multi-indices σ with α · σ ≤ β is finite,
and (28) and (29) both are finite summations. In this event pβ,k (x, t) is a
polynomial in both x and t – that is, it is a polynomial in the n+1 variables
(x1, · · · , xn, t).

We summarize formally the results thus far of this section :
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Theorem 1 Let L be the operator (11) with real or complex constant coeffi-
cients {aα}, and let ` be a positive integer. Then the functions {pβ,k (x, t)},
as defined by (28) or the equivalent (29), and indexed by multi-indices β in
Rn and integers k, 0 ≤ k < `, solve the initial value problems

∂`

∂t`
pβ,k (x, t) = Lpβ,k (x, t) ,

∂j

∂tj
pβ,k (x, 0) =

{
xβ , if j = k ,
0 , if j 6= k and 0 ≤ j < ` .

Each function pβ,k is a polynomial in x when t is held fixed, and is a poly-
nomial in both x and t in the event that L has no zero order term.

From (28) it follows that, for 1 ≤ k < `,

∂

∂t
pβ,k (x, t) = pβ,k−1 (x, t) ,

∫ t

0
pβ,k−1 (x, r) dr = pβ,k (x, t) . (32)

Given any multi-index γ in Rn, we may differentiate (23) and (19) to obtain∑
β

∂γ
xpβ,k (x, t)

yβ

β!
= ∂γ

xGk (x, t, y) = yγGk (x, t, y)

= yγ
∑
β

pβ,k (x, t)
yβ

β!
=
∑
β

pβ,k (x, t)
yβ+γ

β!

=
∑
β≥γ

pβ−γ,k (x, t)
yβ

(β − γ)!
.

Consequently,

∂γ
xpβ,k (x, t) =

{
β!

(β−γ)! pβ−γ,k (x, t) , if β ≥ γ .

0 , if β � γ .
(33)

There is still another interesting way to present the polynomials {pβ}.
With use of the identity

∂γ
(
xβ
)

=
{

β!/ (β − γ)! xβ−γ , if γ ≤ β,
0 , otherwise,

we may write (29) as

pβ,k (x, t) =
∑

α·σ≤β

|σ|!
σ!

aσt`|σ|+k

(` |σ|+ k)!
∂α·σ

(
xβ
)

.
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But since ∂α·σ (xβ
)

= 0 when α ·σ is false, we may in fact sum over all σ in
RI to obtain

pβ,k (x, t) =
∞∑

m=0

t`m+k

(`m + k)!

∑
|σ|=m

m!
σ!

aσ∂α·σ
(
xβ
)

.

Now, using (13) and (24), we observe that

Lm =

(
I∑

i=1

ai∂
αi

x

)m

=
∑
|σ|=m

m!
σ!

aσ∂α·σ .

Thus our formula for pβ,k becomes

pβ,k (x, t) =
∞∑

m=0

t`m+k

(`m + k)!
Lm

(
xβ
)

. (34)

Use of equation (14) allows the brief symbolic representation

pβ,k (x, t) = E (t,L; `, k) xβ (0 ≤ k < `) . (35)

Note that if L has no zero order term then (34) terminates after a finite
number of terms, yielding a polynomial solution.

If in (34) we designate functions

um (x, t) =
t`m+k

(`m + k)!
xβ , m = 0, 1, 2, 3, . . . ,

then we can write this formula as

pβ,k (x, t) =
∞∑

m=0

Lm [um (x, t)] . (36)

Moreover, the sequence of functions {um} has the properties

d`

dt`
um (x, t) =

{
0 , if m = 0,
um−1 (x, t) , if m ≥ 1.

In the terminology of Karachik [20, 22], the sequence {um} is “0-normalized
with respect to the operator d`/dt` ”. Karachik shows that, for a large class
of constant coefficient partial differential equations of the form

Ku= Mu− Lu = 0 ,

polynomial solutions can be written in the form (36) where {um} is 0-
normalized with repect to the operator M. Representation (34) is but one
example of this general formulation.
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5 Examples

We give a few examples of equations having the form (12), and of the asso-
ciated polynomials.

Example 2 If we take ` = 1 and L = ∆, then (12) becomes the heat equa-
tion in n space variables,

∂u

∂t
= ∆u =

n∑
i=1

∂2u

∂x2
i

.

We have a = (1, · · · , 1) and α = (2e1, · · · , 2en), where ei denotes the i-th
unit coordinate vector. Also, σ = (σ1, · · · , σn) and α · σ = 2σ1e1 + · · · +
2σnen = 2σ. In formula (29) we must take k = 0, and thus we obtain but
one family of polynomials,

pβ (x, t) = β!
∑
2σ≤β

xβ−2σt|σ|

(β − 2σ)!σ!
.

These are the classical n-dimensional heat polynomials studied by Rosen-
bloom and Widder [28, 31, 32].

Example 3 With ` = 1 and in one space dimension n = 1, and with L =
∂r/∂xr, r ≥ 1, (12) becomes the equation studied by Kemnitz [23],

∂u

∂t
=

∂ru

∂xr
. (37)

Formula (28) specializes to the formula of Kemnitz,

pβ (x, t) = β!
∑

γ+rσ=β

xγtσ

γ!σ!
,

where in one space dimension the multi-indices β, γ, and σ reduce to non-
negative integers. Haimo and Markett [15, 16] studied polynomial solutions
of a closely related equation,

∂u

∂t
= (−1)m+1 ∂2mu

∂x2m
.

For this equation, (29) specializes to the formula of Haimo and Markett,

pβ (x, t) = β!
∑

2mσ≤β

(−1)(m+1)σ xβ−2mσtσ

σ! (β − 2mσ)!
,

where once again β and σ are nonnegative integers.
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Example 4 A natural extension of the Kemnitz equation (37) is the equa-
tion in one space dimension,

∂`u

∂t`
=

∂ru

∂xr
, (38)

where ` and r are positive integers. (The case ` = r = 4, for example, is in-
vestigated in [29].) Here the multi-indices β, γ, and σ, all one-dimensional,
may be viewed as nonnegative integers. The only space multi-index α in-
volved in the equation is α1 = (r), with the corresponding coefficient a1 = 1.
Formulas (28 – 29) produce the polynomial representations

pβ,k (x, t) = β!
∑

γ+rσ=β

xγt`σ+k

γ! (`σ + k)!
= β!

∑
rσ≤β

xβ−rσt`σ+k

(β − rσ)! (`σ + k)!
. (39)

The first summation is taken over all γ and σ such that γ + rσ = β, while
the second is taken over all σ such that rσ ≤ β. For example, if ` = r = 4
then the polynomial p10,1 (x, t) is

p10,1 (x, t) = 10!
∑

4σ≤10

x10−4σt4σ+1

(10− 4σ)! (4σ + 1)!
= x10t + 42x6t5 + 5x2t9 .

This polynomial solves (38) with ` = r = 4, and with Cauchy data

p (x, 0) = 0 , pt (x, 0) = x10 , ptt (x, 0) = 0 , pttt (x, 0) = 0 .

Note that we can write (39) also as

pβ,k (x, t) =
∞∑

σ=0

t`σ+k

(`σ + k)!

(
∂r

∂xr

)σ (
xβ
)

,

thereby producing a simple illustration of the alternative formula (34).

Example 5 If we take ` = 1 but leave L as in (11), then (12) simplifies to
an equation studied by the present authors in [18, 19]. Again, in (29) we
must take k = 0, obtaining the single family of polynomials

pβ (x, t) = β!
∑

α·σ≤β

aσxβ−α·σt|σ|

σ! (β − α · σ)!
.

Each polynomial pβ solves the Cauchy problem

∂

∂t
pβ (x, t) = Lpβ (x, t) , pβ (x, 0) = xβ .
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Example 6 The complex Cauchy-Riemann equation for analytic functions
is

fx + ify = 0 ,

satisfied by analytic functions f = f (x, y). We write this equation in the
form

fy = ifx ,

and substitute into (28) with t replaced by y. We have ` = 1, k = 0, and
all multi-indices are scalars, with α · σ = σ, aσ = iσ. Writing pβ (x, y) =
pβ,0 (x, y), we find that

pβ (x, y) = β!
∑

γ+σ=β

iσxγyσ

γ!σ!
=

β∑
γ=0

(
β

γ

)
xγ (iy)β−γ = (x + iy)β .

These analytic polynomials, satisfing the initial conditions pβ (x, 0) = xβ,
are of course the familiar powers zβ of the complex variable z = x + iy.

Example 7 For the wave equation in n space dimensions,

∂2u

∂t2
= ∆nu ,

we have ` = 2. Then (28) gives two families of polynomials,

pβ,0 (x, t) = β!
∑

γ+2σ=β

|σ|!
(2 |σ|)!

xγt2|σ|

γ!σ!
,

pβ,1 (x, t) = β!
∑

γ+2σ=β

|σ|!
(2 |σ|+ 1)!

xγt2|σ|+1

γ!σ!
,

where the sum is over multi-indices γ, σ in Rn. These polynomials solve the
wave equation, with initial conditions

pβ,0 (x, 0) = xβ , pβ,1 (x, 0) = 0 ,

∂

∂t
pβ,0 (x, 0) = 0 ,

∂

∂t
pβ,1 (x, 0) = xβ .

In the case of one space dimension n = 1, both γ and σ are nonnegative
integers, and it can be verified that the polynomials simplify to

pβ,0 (x, t) =
1
2

[
(x + t)β + (x− t)β

]
,

pβ,1 (x, t) =
1

2 (β + 1)

[
(x + t)β+1 − (x− t)β+1

]
.
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Example 8 The equation governing the two-dimensional free transverse vi-
bration of a thin elastic plate is

∂2u (x, y, t)
∂t2

+ K2∆2u (x, y, t) = 0 ,

where ∆2 is the biharmonic operator and K is a positive constant. We set
c = −K2 and write the equation in the form

∂2u

∂t2
= cuxxxx + 2cuxxyy + cuyyyy =

3∑
i=1

ai∂
αi

u , (40)

where

a1 = c , a2 = 2c , a3 = c , a = (c, 2c, c) ,

α1 = (4, 0) , α2 = (2, 2) , α3 = (0, 4) .

We have ` = 2, α =
(
α1, α2, α3

)
, and we write σ = (p, q, r), so that

α · σ = α1p + α2q + α3r = (4p + 2q, 2q + 4r) ,

(x, y)α·σ = x4p+2qy4r+2q , aσ = cp (2c)q cr = 2qcp+q+r .

Setting β = (β1, β2), we find that (29) can be written as

pβ,k (x, t) = β1!β2!
∑

4p+2q≤β1 , 4r+2q≤β2

(p + q + r)!
p!q!r!

·

2qcp+q+rxβ1−4p−2qyβ2−4r−2qt2p+2q+2r+k

(β1 − 4p− 2q)! (β2 − 4r − 2q)! (2p + 2q + 2r + k)!
.

The summation is taken over all multi-indices σ = (p, q, r) such that 4p +
2q ≤ β1 and 4r + 2q ≤ β2. For example, if β = (6, 5), acceptable values of σ
are

(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (1, 0, 0) , (1, 0, 1) , (0, 2, 0) , (1, 1, 0) .

After some calculation we find that, with β = (6, 5) and k = 0, the polyno-
mial pβ,k (x, y, t) is

p(6,5),0 (x, y, t) = x6y5 + 60cx6yt2 + 600cx4y3t2

+ 180cx2y5t2 + 10800c2x2yt4 + 2400c2y3t4 .

This polynomial solves (40) along with the Cauchy conditions

p (x, y, 0) = x6y5 , pt (x, y, 0) = 0 .
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Example 9 As an example of an equation with a zero order term, consider
in one space dimension a special case of the telegraph equation,

∂2u

∂t2
= Bu +

∂2u

∂x2
.

The two multi-indices α corresponding to space derivatives reduce to scalars,
α1 = 0 and α2 = 2. In (29) also β and γ are scalars, while σ = (i, j) is a
multi-index in R2. We have a = (B, 1) a vector in R2, with α · σ = 2j and
aσ = Bi. Setting ` = 2, for k = 0 and k = 1 we may write (29) as

pβ,k (x, t) = β!
∑

i,j:2j≤β

(i + j)!
(2i + 2j + k)!

Bixβ−2jt2i+2j+k

(β − 2j)!i!j!
.

The summation is over all multi-indices (i, j) such that 2j ≤ β. As there is
no restriction on i, we may split the sum as

pβ,k (x, t) = β!
∑
2j≤β

xβ−2j

(β − 2j)!j!

∞∑
i=0

(i + j)!
(2i + 2j + k)!

Bit2i+2j+k

i!
, k = 0, 1 .

Note that pβ,k is a polynomial with respect to x, but not with respect to t.
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