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Abstract:  We will set up a model of traffic flow into an 
intersection and compare the two-way stop traffic control and the 
four-way stop traffic control with regard to the average time delay 
per car.  We will use simulations to demonstrate that a two-way 
stop system is always more efficient than a four-way stop system, 
as far as average time delay per car is concerned.  We will explain 
the validity of our model, and show how to extend it to study other 
parameters of interest.  The simulations were run on a personal 
computer using the MATLAB computing environment.  Details of 
setting up efficient codes, in general, will be provided.  Moreover, 
elements of MATLAB coding, a language which is very intuitive 
and similar to the C-family, will also be given.   
 
INTRODUCTION 
 The basic object under consideration, an automobile 
intersection, is shown in Figure 1.   
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Figure 1.  A two-way stop controlled automobile intersection, with 
simulated data displayed.     
 
Even for this simple model, there are many variables and an 
infinite number of interesting problems that one might consider.  
The two quantities shown in Figure 1 have the following 
meanings:  avgw = the average time lost at the intersection by ALL 

cars,  maxw = the maximum time lost at the intersection by a car 
approaching on X Street.     
 

 To set up the model, the following intrinsic parameters and 
basic variables will be required.   We distinguish between X-cars 
(cars approaching the intersection on X Street) and Y-cars (cars 
approaching on Y Avenue).  xf = the flow rate on X Street (= the 
number of cars/unit time entering the system through either end of 
X Street),  and yf = the flow rate on Y Avenue.   In our model, we 

will assume that the cars arriving from either end of X Street have 
the same homogeneous Poisson process distribution, and likewise 
for the cars arriving on either end of Y Avenue.  We will assume 
that all cars arriving into the intersection will continue in the same 
direction.   We make this assumption only to simplify the 
computations of the delay times, which for any car will simply be 
the difference in actual time that it takes the car to run the length 
of the road less the time it would take if it were to maintain the 
(constant) speed limit.  To make up for this assumption of 
convenience, we will work with the standard (legal) protocol for 
priorities at an intersection:  cars that arrive first have first priority, 
and the next car in priority must wait until its predecessor has 
cleared the intersection.  In particular, we ignore the common, if 
not strictly legal practice of cars negotiating the sharing of an 
intersection.  We will arbitrarily set up a priority system to handle 
cases where two or more cars arrive at their stops signs 
simultaneously.  Although there are specific roadway laws 
governing such priorities, different priority systems will result in 
the same average time delays, so any will be sufficient for our 
purposes.  We assume that all cars will maintain the speed limit 
unless, slowing down for, moving away from, or resting at a stop 
sign.  We assume that speed limits on both streets will be equal, 
but removing this restriction is not difficult.   
 
 Our methodology will be to create simulation programs using 
the MATLAB software.  The explanations will be presented in a 
general fashion so as to allow the creation of simulation programs 
in any feasible computing platform.  These programs can be run on 
personal computers with acceptable speed and graphical output.  
The lion’s share of the computer time, however, will be taken up 
by the graphical output.  The basic strategy in designing our 
simulation programs will be to first design one with a full 
graphical account of all of the events taking place, and then (after 
checking to see that it works the way we intended it to work), we 
disable all of the graphics from it to get a streamlined core 
program.  The latter program will be more robust and from it we 
will be able to collect a sufficient amount of data to draw 
conclusions from.   The graphically enhanced original program is 
vital.  The simulations are quite complicated for such traffic 
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problems, and a graphical output will allow us a most effective 
way to detect and eliminate any bugs that the program might have.    
  
 After running the graphics-based version to show its 
plausibility, we will use a non-graphics version of the program to 
create some large sets of simulation data that we will analyze and 
draw conclusions from.  Our simulations will demonstrate the 
rather surprising conclusion that the two-way stop sign 
configuration (see Figure 1)  (in case x yf f≥ ) is always 

advantageous over a four-way stop sign system, as far as 
minimizing average lost time is concerned.  For an assortment of 
various flow rates, we will run simulations for very long time 
intervals so that the simulated values of average time lost either 
stabilize or grow without bound.  The latter cases correspond to 
the traffic control system being unfeasible to control the given 
traffic.  In particular, our simulations will indicate that for a given 
traffic flow, unfeasibility of a two-way stop system will be 
sufficient for that of a four-way stop system, but not conversely.   
 
 If traffic flows are too high for stop sign systems, one can 
then consider traffic lights, or, in extreme cases, even an overpass.   
One obvious fact is that if a four-way traffic light is used, the red 
light proportions in a given light cycle should be approximately 
inversely proportional to the ratio of the traffic flows.    Our 
methods should enable the reader to set up similar simulations to 
examine many other related questions such as: When are traffic 
lights more efficient?, Once a traffic light is deemed necessary, 
how long should the cycle last?   Any 4-way traffic light system 
can be reduced to any sort of 2-way or 4-way stop sign system 
using flashing lights (and many municipal systems revert to this 
during the graveyard shift hours), and furthermore, traffic lights 
can be programmed to adapt to changes in traffic flows.   
 
 Computer simulation of traffic dates back to the 1955 
dissertation of D. L. Gerlough [1], and since this time it has 
developed into a vast area of research with many facets and is 
helping to make our increasingly congested roadways more safe 
and efficient.  Traffic simulations are often dynamic in nature and 
the most efficient traffic control systems react to the dynamics of 
the system rather than the other way around.  Even the problem of 
optimal traffic control for a single traffic intersection is still not 
fully resolved and remains an area of active research, see, e.g.,  
[2].   The complexity of even the most simple sort of intersection 
(see Figure 1) is analytically unsolvable so that simulation is the 
only feasible approach.  Our models will ignore the possibility of 
automobile accidents due to driver error, but our systems will be 
designed so as to not allow drivers to enter into an accident 
provided that the rules and signals are followed.  Safety is a 
serious issue that cannot be ignored, and inevitably accidents do 
happen (even on the best designed traffic systems).  In practice, 
most traffic simulation programs that have been developed are 
constructed to avoid accidents.  Although some work has been 
done to include accidents in traffic simulation programs (see, e.g., 
[3]), effective general methods remain to be developed.  For a 
good general survey of recent trends in simulations in traffic 
control, we cite [4].   

PREPARATION AND THE ARRIVAL 
PROCESS 
 For an introduction to the MATLAB computing environment, 
see [5].  We need to work in a specific reference frame, for 
simplicity we will use the one shown in Figure 2. 
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Figure 2  A MATLAB graphic of a generic (four-way) stop signed 
intersection, with three cars. 
 
The following MATLAB commands will produce the intersection 
in Figure 2: 
 
axis(2*[-3 3 -3 3]) 
hold on 
xl=[-6 -.5 -.5 -6];, yb=[-6 -6 -.5 -.5]; 
xr=[.5 6 6 .5];, yt=[.5 .5 6 6]; 
fill(xl,yb,[.7 .7 .7]), fill(xl,yt,[.7 .7 .7]), 
fill(xr,yb,[.7 .7 .7]),  fill(xr,yt,[.7 .7 .7]) 
t=-6:.25:6;, u=zeros(size(t)); 
plot(u,t,'--y','LineWidth',2) 
plot(t,u,'--y','LineWidth',2) 
(The semicolon at the end of a MATLAB command suppresses its output.)   
 
Each stop sign can be inserted using a command like the following 
(which installs the southbound lane’s stop sign): 
 
Sstop = text(-.7,1, 'STOP'); 
set(Sstop, 'Rotation', 180, 'BackgroundColor',... 
[1 0 0],'FontWeight', 'bold', 'Color', [1 1 1]); 
(The ellipsis ‘…” in MATLAB is used to continue a long command line on 
the next line of code.) 
 
We leave it to the reader to create the other three stop signs.  We 
distinguish the four lanes:  East, West, North, and South.  Note 
that each lane has length 12 and width 0.5.  The cars have length 
0.3 and width 0.15.  The basic parameters for the East and West 
cars are as follows: 
 
EcarX=.15*[-2 0 0 -2]; EcarY=0.075*[-3 -3 -1 -1]; 
WcarX=.15*[0 2 2 0]; WcarY=0.075*[1 1 3 3]; 
 
 The cars are the objects that will be changing in the graphic 
display of this simulation.  To place the East(bound) car that 
appeared in Figure 2, we could have entered the command: 
 
Car1 = fill(EcarX+2,EcarY,'r')  
 
Try this, and see the eastbound car appear in your MATLAB 
window.  We could have just entered the latter part of the above 
command ‘fill...’ to have obtained the same result, but it is 
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convenient to give graphical objects names, since then it will be a 
simple matter to change their position (or many other of its 
attributes).  For example, if we wanted to change the above 
eastbound car’s position so that it advanced .5 units forward 
(eastbound), we could simply enter:   
 
set(Car1(E(i,1)), 'XData', EcarX + 2.5) 
 
This will cause the current East car to disappear and be replaced 
by a new East car with the desired position.  We leave it to the 
reader to construct corresponding parameters for North and South 
cars, and to append the plot of the northbound car shown in Figure 
2.   We also would like to include a sign for the real-time updated 
average delay (as shown in Figure 1).  The following commands 
will set this up: 
 
DelaySign=text(-5,4,'Average Delay'); 
AvgDelayTracker=text(4.5,3.4,num2str(0,5),... 
'FontWeight','bold', 'BackgroundColor','c'); 
 
 We are assuming that cars arrive (from both sides) of each 
road according to a homogeneous Poisson process.   This 
necessitates establishing some unit of time as a reference frame.  
The governing variable in our model is the time t, and the 
simulation starts at t = 0.    We recall the standard algorithm for 
generating events of a homogeneous Poisson process with rate λ  
from t = 0 to t = T:  (see, Section 5.4 of [6]): 
 
Set t = 0, counter = 0.  Continue to generate (uniformly distributed) random 
numbers 1 2, ,U U L in (0, 1)  and advancing t by  (log ) /it t U λ= −  
along with incrementing the counter until the time advances past T.  These 
time values constitute the event times of the Poisson process.    
   
 In our simulation, we will advance t by whole numbers:  t = 
0, t =1, t = 2, ….(called discrete time units, or du’s).  We will 
assume that when traveling at normal speed, a car will cover one 
quarter of its length (dx = 0.075) as t advances by 1du.  Also, we 
assume that at the speed limit, the minimum gap between 
consecutive cars (on the same lane) is 1.5 carlengths (= 6dx).  The 
following MATLAB program uses a  slight modification of the 
Poisson process to generate arrival times that satisfy a minimum 
gap requirement.   
 
function Times = hompoissongap(lambda, T, mingap) 
Times = [ ]; t=0; 
while 1 
    U = rand; 
    t = t-1/lambda*log(U); 
    if t > T 
        break 
    else 
        Times = [Times t]; 
    end 
end 
len=length(Times); 
for i=1:len-1 
now=Times(i); next=Times(i+1); 
while next-now<mingap 
Times(i+1)=now+mingap; i=i+1; 
if i+1>len, return, end 
now=next; next=Times(i+1); 
end 
end 
 

 

CREATION OF THE SIMULATION 
PROGRAMS 
 We will provide a detailed outline of the construction of a 
graphically enhanced simulation program for the two-way stop 
controlled intersection with traffic flow as described in the last 
section, along with many details of the MATLAB code.  In order 
for the graphical animations that will be produced by such a 
program to display smoothly in MATLAB , it is helpful to enter 
the following in the command window (after a graphics window 
for the intersection has been set up as in the last section): 
 
set(gcf, 'DoubleBuffer', 'on') 
 
Without getting into technical details, this command changes the 
way MATLAB’s graphics window draws its displays in a way that 
is more conducive to animated rather than static displays.   
 
 We will measure our traffic flow rates xf and yf  in terms of 

cars per 800 du.  To put things into a practical perspective, let us 
take a typical car to be 14 feet in length.  The speed limit of the 
cars listed in the last section would translate into 2.12 miles per 
800 du.  Thus, if we were to take 800 du to be 4 minutes of real 
time, this would translate to a speed limit of approximately 30 
m.p.h ( 31.81 to be exact).  Once the flow rates have been entered 
as variables ‘fx’ and ‘fy’ into the program, as well as a variable 
‘T’, indicating the number of du’s over which the program should 
run, we can use the program of the last section to create simulated 
arrival times for cars in each of the four directions.  In MATLAB, 
the arrivals of the eastbound cars could thus be constructed with 
the following  command: 
 
Etimes=hompoissongap(fx/800,T,10); 
 
In the same fashion, the simulated arrival times ‘Wtimes’, 
‘Ntimes’, and ‘Stimes’, for the other lanes can be created.  It 
would consume less storage to simply create these simulated times 
as needed (and delete them when we are finished with them); we 
will leave this embellishment to the reader as its implementation 
will become relatively clear after the program is understood. 
 
 We also pre-allocate corresponding vectors for the 
northbound and southbound departure times (whose entries will be 
constructed by the program), as well as variables that will sum the 
total delay times for northbound and southbound cars (the only 
cars that will be delayed by the stop signs). 
 
NtimesDep=zeros(size(Ntimes)); 
StimesDep=zeros(size(Stimes));   
delayN=0; delayS=0; 
 
It will be convenient to add an extra imaginary car that will arrive 
at t = ∞  to each of the four vectors of arrival times: 
 
Etimes=[Etimes Inf]; Wtimes=[Wtimes Inf]; 
Ntimes=[Ntimes Inf]; Stimes=[Stimes Inf]; 

 
 In order to make the appropriate changes in our system at 
each du time increment, it will be necessary to keep track of the 
cars that are in the system, the system being the intersection of 
Figure 2 (with only a two-way stop for the North/South cars).  We 
next describe and initialize some variables that will help to make 
this task more manageable: 
 

SCSC '04 50 ISBN: 1-5655-283-0



SYSTEM VARIABLES: 
 

Indices for each type of car: 
iE=1; iW=1; iN=1; iS=1; 
 

Variables for the “next” arrival times: 
nextE=Etimes(iE); nextW=Wtimes(iW); 
nextN=Ntimes(iN); nextS=Stimes(iS); 
 

Information matrices for cars currently in the system, and 
corresponding variables tracking the number of rows: 
E=[]; W=[]; N=[]; S=[]; 
rowsE=0; rowsW=0; rowsN=0; rowsS=0; 
 

Note:  Initially, of course, these matrices are empty since there are no cars 
in the system.  In general, these matrices will have two columns and a row 
for each car in the system in its corresponding lane.  For example, the first 
column entry of an eastbound car in the matrix ‘E’ indicates the index of 
the car, that is, the index of the car’s arrival time in the ‘Etimes’ vector.  
The second column entry for the car in the system indicates the x-
coordinate of the front of the car at the current time t.  We will arrange it so 
that the first column entries of E decrease.  This corresponds to new cars 
entering the system having their information put in the first row of E.   
 

Variables to keep track of the priority in the intersection: 
tracker = [];, busyflag=0; justcN=0; justcS=0; 
 

Note:  The variable ‘tracker’ (initially empty), is a vector that will keep 
track of who has priority in the intersection.  This vector will have at most 
three components among the numbers 1 (for North) and 2 (for South).  The 
first entry in the vector has first priority or is currently clearing the 
intersection.  The variable ‘busyflag’  is a number being either 0, if no 
north/southbound cars are clearing the intersection at the current time t, 1 if 
a northbound car is currently clearing the intersection, or 2 if a southbound 
car is currently clearing the intersection.  The last two variables will either 
take on the values 0 or 1; most of the time they will be zero.  The variable 
‘justcN’ will be 1 for the first few du’s after a northbound car has just 
cleared the intersection.  We will make the notion of “clearing the 
intersection” more precise in a short while.   
 
 With the variables and graphics initialized we are now ready 
to describe the main simulation program.  It will run from t = 0 to t 
= T du’s (in MATLAB: for t=0:T).  At each time increment 
we will need to do two things:  (i) Update the current cars that are 
in the system, and (ii) check for any new cars that will enter the 
system.  At each iteration, (i) should be done before (ii) because 
we need to assure that the new car will have an appropriate gap 
from its immediate predecessor.  While this will be automatic for 
eastbound and westbound cars by the way the arrival times were 
constructed, it may be a problem for the north and southbound 
cars, in case the traffic is backed up.   
 
(i) Updating Current Cars in the System: 
 We begin with how to deal with eastbound cars.    Westbound 
cars can be dealt with similarly.  Such cars proceed through the 
system at constant speed, so are quite simple to track.  The 
following loop will perform the required updates in the system 
variables: 
 
for i=1:rowsE 
     if E(i,2)>6+4*dx %E car has just left system 
         delete(Ecar(E(i,1))) 
         rowsE=rowsE-1; 
         E=E(1:rowsE,:); 
     else 
         E(i,2)=E(i,2)+dx; 
         set(Ecar(E(i,1)), 'XData', E(i,2)+EcarX) 
        end, end 
(The percent symbol ‘%’ in MATLAB indicates a comment that will be 
ignored by the compiler.)   
 

There are two easy cases.  In one case, the car has left the system 
(we take this to be when the front of the car is greater than a car 
length past 6), and we delete the graphic element of the car and the 
last row of E.  The graphic element for the car ‘Ecar(E(i,1))’, 
will have been previously constructed in Part (ii) of the code.  The 
other case corresponds to the car still remaining in the system.  
Here we simply need to update its information in the matrix E and 
reset the position in its graphical object.   
 
 North and southbound cars are more complicated since each 
need to stop at the intersection.  Furthermore, the distance that a 
given car will advance will depend on various factors such as: is it 
clearing the intersection (so speeding up)?, does it have traffic 
backed up before it?   We explain in detail how to deal with 
updating the matrix N corresponding to the northbound cars.  
When such a car is still in the system, in order to correctly update 
its position, we need to separate into several cases depending on 
where the “front” of the car is located.   Firstly, to account for 
backed up traffic, it is important that the positions of cars be 
updated starting with the first ones to enter the system.  In 
MATLAB, the updating loop for the N matrix could be indexed as 
follows:   
 
for i=rowsN:-1:1 
 
 We separate into different cases depending on where the front 
of the car (y-coordinate N(i,2)) is located.  The case where the car 
has just left the system is done in the same way as was done for 
eastbound cars above.  The only difference is that we will need to 
record the departure time, compute the delay that the car 
experienced and add this onto the ‘delayN’ variable.    
 
if N(i,2)>6+4*dx %N car has just left system 
      NtimesDep(N(i,1))=t; 
      delayN=t-Ntimes(N(i,1))-163+delayN; 
      delete(Ncar(N(i,1))) 
      rowsN=rowsN-1; 
      N=N(1:rowsN,:); 
else %N car is still in system, we will have to 
     %reset its y-data. There are several cases. 
  
Note:  The ‘delay’ that is added to the ‘delayN’ variable above equals the 
difference in the actual time the car spent in the system less the time it 
would take to run the same course at normal speed (as if there were no stop 
sign).  For example, if the northbound car had index iN=8, the time the car 
spent in the system is NtimesDep(8) – Ntimes(8).  This time corresponds to 
when the vehicle’s front end was at position y = -6 + dx until it reached y = 
6 + 4 ⋅ dx.  Since dx = .3/4, we get 160dx = 12, so it would take 163 time 
units for a car to run this course at normal speed.  We ignore round-off 
errors arising from rounding arrival times to their floors of the discrete time 
units. 
 
 We will declare the “speed up” (clearing) zone of the 
intersection to be when the front of the car is in the range y = -0.5 
to y = 1.  The following commands will introduce the gap between 
the current car and it’s immediate predecessor (if it has one): 
            
front=N(i,2); back=front-4*dx; 
  if i<rowsN %another N car in system is in front 
    gap=N(i+1,2)-4*dx-front; 
  end 
 
When a car is out of the speed up zone, the treatment is quite 
simple (no possible traffic), we just need to reset the ‘justcN’ 
variable back to 0, in case the car “just enters” into the zone: 
             
if front>1 %out of speed up zone 
   N(i,2)=N(i,2)+dx; 
   if front<1+2*dx & justcN==1,justcN=0; end 
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 The speed up zone is handled by the code below, we 
(realistically) give the car a linear increase in speed (with even a 
slight overshoot in speed at the end).  We also add in provisions to 
change the intersection priority variables when the car just leaves 
the clearing zone.   
 
elseif front>-.5 & front <=1 %speed up zone 
   N(i,2)=N(i,2)+dx*(front+.85)/1.5; 
   if busyflag==1&justcN==0&front>.5+4*dx  
     %N car just clears 
     justcN=1; busyflag=0; tracker=tracker(2:end); 
   end 
             
 Before moving on to updating the north/southbound cars, we 
will need to form two sets SN and SS that will help us to later see 
if any north/southbound cars will be able to clear the intersection.  
We will give only the construction of SN, that for SS is similar.  
The set SN will be nonempty precisely when it is unsafe for a 
northbound car to cross the intersection.  It will consist of indices 
of any eastbound car whose front is in the range x = -2.75 to x = .5 
+ 4dx (see Figure 2) as well as the indices of any westbound cars 
in the corresponding “danger zone”.    
 
SN=[]     
if ~isempty(E) 
 SN=find(E(:,2)>-2.75 & E(:,2)<.5+4*dx);, end 
if ~isempty(W),  
SN=union(SN,find(W(:,2)<3 & W(:,2)>-.5));, end 
 
   We set the “slow down zone” for the stop sign to be within the 
ranges y = -1.5 to y = -.58.  The program segment below takes care 
of the pre-slow down zone.  The case where traffic is backed up 
will result in a slower speed increment depending on the gap to the 
next car.   In slowing down, the minimum gaps between cars is 
allowed to (realistically) decrease down to 0.05 (=2/3 dx). 
 
elseif front<-1.5 %before slow down zone 
   if i==rowsN %no gap 
      N(i,2)=N(i,2)+dx; 
   elseif gap>=6*dx 
      N(i,2)=N(i,2)+dx; 
   else, N(i,2)=N(i,2)+dx*(gap-.05)/(6*dx); 
end 
 
 When the car is in the slow down zone, elements of the 
previous two cases are applied to produce the code segment below. 
 
elseif front>=-1.5 & front<-.58  
  %slow down for stop zone 
  if i==rowsN %no gap 
    N(i,2)=N(i,2)+dx*(-.5-front); 
  elseif gap>=6*dx 
    N(i,2)=N(i,2)+dx*(-.5-front); 
  else 
    N(i,2)=N(i,2)+dx*(-.5-front)*(gap-.05)/(6*dx); 
  end 
             
 This takes care of all cases except when the car is actually at 
the stop sign.  The code below takes care of this final case.   
 
else %N car is on stop line, driver needs to wait 
     %for clearing/turn 
if sum(ismember(tracker,1))==0, 
    tracker=[tracker 1];, end 
if busyflag==1&sum(ismember(tracker(2:end),1))==0 
    tracker=[tracker 1]; end 
if busyflag==0&tracker(1)==1&isempty(SN) %go 
     N(i,2)=N(i,2)+.09; busyflag=1; end  
%else stay put 
end 
 
 As all cases having been taken care of, we may now update 
the graphic of the current car ‘set(Ncar(N(i,1)), 
'YData', N(i,2)+NcarY)’, and end the loops. 

(ii) Check for any New Cars that Will Enter the System:   
 For east/westbound cars, the procedure is quite 
straightforward, the MATLAB code is demonstrated below for 
eastbound cars. 
 
 if nextE<t+1 %need to add a new first row of E and 
             %update other variables 
    E=[iE -6+dx; E]; iE=iE+1; rowsE=rowsE+1; 
    if iE<=length(Etimes), nextE=Etimes(iE);, end 
  %next, install graphic w/ handle      
Ecar(E(1,1))=fill(E(1,2)+EcarX,EcarY,'r',... 
'EdgeColor', 'None'); 
 
 The treatment for north/southbound cars needs to take into 
consideration the gap between the front of the new car and the end 
of its immediate predecessor (if there is one).  If the gap exceeds 
10dx, the treatment is as above, but for smaller gaps, the speed 
should be decreased (as was done in some of the previous code 
elements).  If the gap is too small, we treat this as a traffic 
overflow (it would correspond to a backup of approximately 16 
cars).  In such a case, we would end the program with either an 
error message (“traffic jam”), or give an output of an infinite 
delay.  We leave this choice and the remaining writing of this code 
segment to the reader.  Of course, larger backups could be 
accommodated by using an intersection with a longer Y Avenue.    
 
 The final MATLAB segment below will compute the current 
average delay and display it on the graphic window. 
 
delay=delayN+delayS; 
 if delay>0 
   NumOutCars=iE+iW+iN+iS-rowsE-rowsW-rowsN-rowsS; 
   AvgWait=delay/NumOutCars;  
set(AvgDelayTracker,'String',num2str(AvgWait,5)); 
    end 
 drawnow  

 
CONCLUSIONS 
 Once your programs have been debugged to work well, the 
graphics can be disabled and simulations can be run for time 
periods of over 100,000 du’s (which equates to roughly an 8 hour 
real time simulation) in a few minutes on a personal computer.  
We ran 20 such simulations for each flow rate ranging from fx = fy 
= 1 to 6.5 in increments of 0.5, and used the means of the resulting 
outputted sets to obtain the plot shown in Figure 3.   The standard 
deviations for each such data set were tolerable, ranging from 
about 2.5% to about 8%.  The variances clearly reduced in a nice 
accordance with the central limit theorem as the length of the 
simulation increased.  We took the average wait time to be infinite 
if more than half of the 20 trials resulted in a traffic overflow in 
the program (meaning about 16 cars were queued up at one point).  
A suitably modified and more lengthy simulation could be used to 
discern the threshold traffic flows for actual unstable traffic control 
with a given system versus a very long average waiting time.   
 
 It seems quite intuitive that if a four-way stop configuration 
were ever to be more efficient than a two-way system with the 
equivalent traffic flows, then the same should be true in an equal 
traffic flow situation for the two roads.  Even for such a plausible 
statement, an analytic proof does not seem to be available.  In 
Figure 4, we give some simulated evidence for validity of this 
statement.  (Of course, in cases where the flows are different, it is 
clear that the stop signs on a two-way system should be placed on 
the road with less traffic).   
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Figure 3  A plot of simulated delay times for the four-way stop (solid) and 
the two-way stop (dotted) controlled intersection as a function of the 
uniform flow rates.   
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Figure 4  A plot of simulated delay times for the four-way stop (solid) and 
the two-way stop (dotted) controlled intersection as a function of the traffic 
flow rates on Y Avenue.  The traffic flow on X street is maintained at a 
constant rate of 6.  Notice how the differences for the two systems are even 
more extreme than in Figure 3.    
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