
Minimizing Lost Time at Automobile Intersections

Alexander Stanoyevitch
Associate Professor, University of Guam

Division of Mathematical Sciences
UOG Station

Mangilao, GU 96923, USA
alex@math.hawaii.edu

Keywords: Transportation logistics, automobile intersections,
MATLAB

Abstract: We will set up a model of traffic flow into an
intersection and compare the two-way stop traffic control and the
four-way stop traffic control with regard to the average time delay
per car. We will use simulations to demonstrate that a two-way
stop system is always more efficient than a four-way stop system,
as far as average time delay per car is concerned. We will explain
the validity of our model, and show how to extend it to study other
parameters of interest. The simulations were run on a personal
computer using the MATLAB computing environment. Details of
setting up efficient codes, in general, will be provided. Moreover,
elements of MATLAB coding, a language which is very intuitive
and similar to the C-family, will also be given.

INTRODUCTION
 The basic object under consideration, an automobile
intersection, is shown in Figure 1.

wavgavg = = 2.652 sec.2.652 sec.
wmaxmax = 10.241 sec. = 10.241 sec.

X Street

 Y

 A
 v
 e
 n
 u
 e

Figure 1. A two-way stop controlled automobile intersection, with
simulated data displayed.

Even for this simple model, there are many variables and an
infinite number of interesting problems that one might consider.
The two quantities shown in Figure 1 have the following
meanings: avgw = the average time lost at the intersection by ALL

cars, maxw = the maximum time lost at the intersection by a car
approaching on X Street.

 To set up the model, the following intrinsic parameters and
basic variables will be required. We distinguish between X-cars
(cars approaching the intersection on X Street) and Y-cars (cars
approaching on Y Avenue). xf = the flow rate on X Street (= the
number of cars/unit time entering the system through either end of
X Street), and yf = the flow rate on Y Avenue. In our model, we

will assume that the cars arriving from either end of X Street have
the same homogeneous Poisson process distribution, and likewise
for the cars arriving on either end of Y Avenue. We will assume
that all cars arriving into the intersection will continue in the same
direction. We make this assumption only to simplify the
computations of the delay times, which for any car will simply be
the difference in actual time that it takes the car to run the length
of the road less the time it would take if it were to maintain the
(constant) speed limit. To make up for this assumption of
convenience, we will work with the standard (legal) protocol for
priorities at an intersection: cars that arrive first have first priority,
and the next car in priority must wait until its predecessor has
cleared the intersection. In particular, we ignore the common, if
not strictly legal practice of cars negotiating the sharing of an
intersection. We will arbitrarily set up a priority system to handle
cases where two or more cars arrive at their stops signs
simultaneously. Although there are specific roadway laws
governing such priorities, different priority systems will result in
the same average time delays, so any will be sufficient for our
purposes. We assume that all cars will maintain the speed limit
unless, slowing down for, moving away from, or resting at a stop
sign. We assume that speed limits on both streets will be equal,
but removing this restriction is not difficult.

 Our methodology will be to create simulation programs using
the MATLAB software. The explanations will be presented in a
general fashion so as to allow the creation of simulation programs
in any feasible computing platform. These programs can be run on
personal computers with acceptable speed and graphical output.
The lion’s share of the computer time, however, will be taken up
by the graphical output. The basic strategy in designing our
simulation programs will be to first design one with a full
graphical account of all of the events taking place, and then (after
checking to see that it works the way we intended it to work), we
disable all of the graphics from it to get a streamlined core
program. The latter program will be more robust and from it we
will be able to collect a sufficient amount of data to draw
conclusions from. The graphically enhanced original program is
vital. The simulations are quite complicated for such traffic

SCSC '04 48 ISBN: 1-5655-283-0

mailto:alex@math.hawaii.edu

problems, and a graphical output will allow us a most effective
way to detect and eliminate any bugs that the program might have.

 After running the graphics-based version to show its
plausibility, we will use a non-graphics version of the program to
create some large sets of simulation data that we will analyze and
draw conclusions from. Our simulations will demonstrate the
rather surprising conclusion that the two-way stop sign
configuration (see Figure 1) (in case x yf f≥) is always

advantageous over a four-way stop sign system, as far as
minimizing average lost time is concerned. For an assortment of
various flow rates, we will run simulations for very long time
intervals so that the simulated values of average time lost either
stabilize or grow without bound. The latter cases correspond to
the traffic control system being unfeasible to control the given
traffic. In particular, our simulations will indicate that for a given
traffic flow, unfeasibility of a two-way stop system will be
sufficient for that of a four-way stop system, but not conversely.

 If traffic flows are too high for stop sign systems, one can
then consider traffic lights, or, in extreme cases, even an overpass.
One obvious fact is that if a four-way traffic light is used, the red
light proportions in a given light cycle should be approximately
inversely proportional to the ratio of the traffic flows. Our
methods should enable the reader to set up similar simulations to
examine many other related questions such as: When are traffic
lights more efficient?, Once a traffic light is deemed necessary,
how long should the cycle last? Any 4-way traffic light system
can be reduced to any sort of 2-way or 4-way stop sign system
using flashing lights (and many municipal systems revert to this
during the graveyard shift hours), and furthermore, traffic lights
can be programmed to adapt to changes in traffic flows.

 Computer simulation of traffic dates back to the 1955
dissertation of D. L. Gerlough [1], and since this time it has
developed into a vast area of research with many facets and is
helping to make our increasingly congested roadways more safe
and efficient. Traffic simulations are often dynamic in nature and
the most efficient traffic control systems react to the dynamics of
the system rather than the other way around. Even the problem of
optimal traffic control for a single traffic intersection is still not
fully resolved and remains an area of active research, see, e.g.,
[2]. The complexity of even the most simple sort of intersection
(see Figure 1) is analytically unsolvable so that simulation is the
only feasible approach. Our models will ignore the possibility of
automobile accidents due to driver error, but our systems will be
designed so as to not allow drivers to enter into an accident
provided that the rules and signals are followed. Safety is a
serious issue that cannot be ignored, and inevitably accidents do
happen (even on the best designed traffic systems). In practice,
most traffic simulation programs that have been developed are
constructed to avoid accidents. Although some work has been
done to include accidents in traffic simulation programs (see, e.g.,
[3]), effective general methods remain to be developed. For a
good general survey of recent trends in simulations in traffic
control, we cite [4].

PREPARATION AND THE ARRIVAL
PROCESS
 For an introduction to the MATLAB computing environment,
see [5]. We need to work in a specific reference frame, for
simplicity we will use the one shown in Figure 2.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

STOP

STOP

S
T

O
P

S
T

O
P

Figure 2 A MATLAB graphic of a generic (four-way) stop signed
intersection, with three cars.

The following MATLAB commands will produce the intersection
in Figure 2:

axis(2*[-3 3 -3 3])
hold on
xl=[-6 -.5 -.5 -6];, yb=[-6 -6 -.5 -.5];
xr=[.5 6 6 .5];, yt=[.5 .5 6 6];
fill(xl,yb,[.7 .7 .7]), fill(xl,yt,[.7 .7 .7]),
fill(xr,yb,[.7 .7 .7]), fill(xr,yt,[.7 .7 .7])
t=-6:.25:6;, u=zeros(size(t));
plot(u,t,'--y','LineWidth',2)
plot(t,u,'--y','LineWidth',2)
(The semicolon at the end of a MATLAB command suppresses its output.)

Each stop sign can be inserted using a command like the following
(which installs the southbound lane’s stop sign):

Sstop = text(-.7,1, 'STOP');
set(Sstop, 'Rotation', 180, 'BackgroundColor',...
[1 0 0],'FontWeight', 'bold', 'Color', [1 1 1]);
(The ellipsis ‘…” in MATLAB is used to continue a long command line on
the next line of code.)

We leave it to the reader to create the other three stop signs. We
distinguish the four lanes: East, West, North, and South. Note
that each lane has length 12 and width 0.5. The cars have length
0.3 and width 0.15. The basic parameters for the East and West
cars are as follows:

EcarX=.15*[-2 0 0 -2]; EcarY=0.075*[-3 -3 -1 -1];
WcarX=.15*[0 2 2 0]; WcarY=0.075*[1 1 3 3];

 The cars are the objects that will be changing in the graphic
display of this simulation. To place the East(bound) car that
appeared in Figure 2, we could have entered the command:

Car1 = fill(EcarX+2,EcarY,'r')

Try this, and see the eastbound car appear in your MATLAB
window. We could have just entered the latter part of the above
command ‘fill...’ to have obtained the same result, but it is

SCSC '04 49 ISBN: 1-5655-283-0

convenient to give graphical objects names, since then it will be a
simple matter to change their position (or many other of its
attributes). For example, if we wanted to change the above
eastbound car’s position so that it advanced .5 units forward
(eastbound), we could simply enter:

set(Car1(E(i,1)), 'XData', EcarX + 2.5)

This will cause the current East car to disappear and be replaced
by a new East car with the desired position. We leave it to the
reader to construct corresponding parameters for North and South
cars, and to append the plot of the northbound car shown in Figure
2. We also would like to include a sign for the real-time updated
average delay (as shown in Figure 1). The following commands
will set this up:

DelaySign=text(-5,4,'Average Delay');
AvgDelayTracker=text(4.5,3.4,num2str(0,5),...
'FontWeight','bold', 'BackgroundColor','c');

 We are assuming that cars arrive (from both sides) of each
road according to a homogeneous Poisson process. This
necessitates establishing some unit of time as a reference frame.
The governing variable in our model is the time t, and the
simulation starts at t = 0. We recall the standard algorithm for
generating events of a homogeneous Poisson process with rate λ
from t = 0 to t = T: (see, Section 5.4 of [6]):

Set t = 0, counter = 0. Continue to generate (uniformly distributed) random
numbers 1 2, ,U U L in (0, 1) and advancing t by (log) /it t U λ= −
along with incrementing the counter until the time advances past T. These
time values constitute the event times of the Poisson process.

 In our simulation, we will advance t by whole numbers: t =
0, t =1, t = 2, ….(called discrete time units, or du’s). We will
assume that when traveling at normal speed, a car will cover one
quarter of its length (dx = 0.075) as t advances by 1du. Also, we
assume that at the speed limit, the minimum gap between
consecutive cars (on the same lane) is 1.5 carlengths (= 6dx). The
following MATLAB program uses a slight modification of the
Poisson process to generate arrival times that satisfy a minimum
gap requirement.

function Times = hompoissongap(lambda, T, mingap)
Times = []; t=0;
while 1
 U = rand;
 t = t-1/lambda*log(U);
 if t > T
 break
 else
 Times = [Times t];
 end
end
len=length(Times);
for i=1:len-1
now=Times(i); next=Times(i+1);
while next-now<mingap
Times(i+1)=now+mingap; i=i+1;
if i+1>len, return, end
now=next; next=Times(i+1);
end
end

CREATION OF THE SIMULATION
PROGRAMS
 We will provide a detailed outline of the construction of a
graphically enhanced simulation program for the two-way stop
controlled intersection with traffic flow as described in the last
section, along with many details of the MATLAB code. In order
for the graphical animations that will be produced by such a
program to display smoothly in MATLAB , it is helpful to enter
the following in the command window (after a graphics window
for the intersection has been set up as in the last section):

set(gcf, 'DoubleBuffer', 'on')

Without getting into technical details, this command changes the
way MATLAB’s graphics window draws its displays in a way that
is more conducive to animated rather than static displays.

 We will measure our traffic flow rates xf and yf in terms of

cars per 800 du. To put things into a practical perspective, let us
take a typical car to be 14 feet in length. The speed limit of the
cars listed in the last section would translate into 2.12 miles per
800 du. Thus, if we were to take 800 du to be 4 minutes of real
time, this would translate to a speed limit of approximately 30
m.p.h (31.81 to be exact). Once the flow rates have been entered
as variables ‘fx’ and ‘fy’ into the program, as well as a variable
‘T’, indicating the number of du’s over which the program should
run, we can use the program of the last section to create simulated
arrival times for cars in each of the four directions. In MATLAB,
the arrivals of the eastbound cars could thus be constructed with
the following command:

Etimes=hompoissongap(fx/800,T,10);

In the same fashion, the simulated arrival times ‘Wtimes’,
‘Ntimes’, and ‘Stimes’, for the other lanes can be created. It
would consume less storage to simply create these simulated times
as needed (and delete them when we are finished with them); we
will leave this embellishment to the reader as its implementation
will become relatively clear after the program is understood.

 We also pre-allocate corresponding vectors for the
northbound and southbound departure times (whose entries will be
constructed by the program), as well as variables that will sum the
total delay times for northbound and southbound cars (the only
cars that will be delayed by the stop signs).

NtimesDep=zeros(size(Ntimes));
StimesDep=zeros(size(Stimes));
delayN=0; delayS=0;

It will be convenient to add an extra imaginary car that will arrive
at t = ∞ to each of the four vectors of arrival times:

Etimes=[Etimes Inf]; Wtimes=[Wtimes Inf];
Ntimes=[Ntimes Inf]; Stimes=[Stimes Inf];

 In order to make the appropriate changes in our system at
each du time increment, it will be necessary to keep track of the
cars that are in the system, the system being the intersection of
Figure 2 (with only a two-way stop for the North/South cars). We
next describe and initialize some variables that will help to make
this task more manageable:

SCSC '04 50 ISBN: 1-5655-283-0

SYSTEM VARIABLES:

Indices for each type of car:
iE=1; iW=1; iN=1; iS=1;

Variables for the “next” arrival times:
nextE=Etimes(iE); nextW=Wtimes(iW);
nextN=Ntimes(iN); nextS=Stimes(iS);

Information matrices for cars currently in the system, and
corresponding variables tracking the number of rows:
E=[]; W=[]; N=[]; S=[];
rowsE=0; rowsW=0; rowsN=0; rowsS=0;

Note: Initially, of course, these matrices are empty since there are no cars
in the system. In general, these matrices will have two columns and a row
for each car in the system in its corresponding lane. For example, the first
column entry of an eastbound car in the matrix ‘E’ indicates the index of
the car, that is, the index of the car’s arrival time in the ‘Etimes’ vector.
The second column entry for the car in the system indicates the x-
coordinate of the front of the car at the current time t. We will arrange it so
that the first column entries of E decrease. This corresponds to new cars
entering the system having their information put in the first row of E.

Variables to keep track of the priority in the intersection:
tracker = [];, busyflag=0; justcN=0; justcS=0;

Note: The variable ‘tracker’ (initially empty), is a vector that will keep
track of who has priority in the intersection. This vector will have at most
three components among the numbers 1 (for North) and 2 (for South). The
first entry in the vector has first priority or is currently clearing the
intersection. The variable ‘busyflag’ is a number being either 0, if no
north/southbound cars are clearing the intersection at the current time t, 1 if
a northbound car is currently clearing the intersection, or 2 if a southbound
car is currently clearing the intersection. The last two variables will either
take on the values 0 or 1; most of the time they will be zero. The variable
‘justcN’ will be 1 for the first few du’s after a northbound car has just
cleared the intersection. We will make the notion of “clearing the
intersection” more precise in a short while.

 With the variables and graphics initialized we are now ready
to describe the main simulation program. It will run from t = 0 to t
= T du’s (in MATLAB: for t=0:T). At each time increment
we will need to do two things: (i) Update the current cars that are
in the system, and (ii) check for any new cars that will enter the
system. At each iteration, (i) should be done before (ii) because
we need to assure that the new car will have an appropriate gap
from its immediate predecessor. While this will be automatic for
eastbound and westbound cars by the way the arrival times were
constructed, it may be a problem for the north and southbound
cars, in case the traffic is backed up.

(i) Updating Current Cars in the System:
 We begin with how to deal with eastbound cars. Westbound
cars can be dealt with similarly. Such cars proceed through the
system at constant speed, so are quite simple to track. The
following loop will perform the required updates in the system
variables:

for i=1:rowsE
 if E(i,2)>6+4*dx %E car has just left system
 delete(Ecar(E(i,1)))
 rowsE=rowsE-1;
 E=E(1:rowsE,:);
 else
 E(i,2)=E(i,2)+dx;
 set(Ecar(E(i,1)), 'XData', E(i,2)+EcarX)
 end, end
(The percent symbol ‘%’ in MATLAB indicates a comment that will be
ignored by the compiler.)

There are two easy cases. In one case, the car has left the system
(we take this to be when the front of the car is greater than a car
length past 6), and we delete the graphic element of the car and the
last row of E. The graphic element for the car ‘Ecar(E(i,1))’,
will have been previously constructed in Part (ii) of the code. The
other case corresponds to the car still remaining in the system.
Here we simply need to update its information in the matrix E and
reset the position in its graphical object.

 North and southbound cars are more complicated since each
need to stop at the intersection. Furthermore, the distance that a
given car will advance will depend on various factors such as: is it
clearing the intersection (so speeding up)?, does it have traffic
backed up before it? We explain in detail how to deal with
updating the matrix N corresponding to the northbound cars.
When such a car is still in the system, in order to correctly update
its position, we need to separate into several cases depending on
where the “front” of the car is located. Firstly, to account for
backed up traffic, it is important that the positions of cars be
updated starting with the first ones to enter the system. In
MATLAB, the updating loop for the N matrix could be indexed as
follows:

for i=rowsN:-1:1

 We separate into different cases depending on where the front
of the car (y-coordinate N(i,2)) is located. The case where the car
has just left the system is done in the same way as was done for
eastbound cars above. The only difference is that we will need to
record the departure time, compute the delay that the car
experienced and add this onto the ‘delayN’ variable.

if N(i,2)>6+4*dx %N car has just left system
 NtimesDep(N(i,1))=t;
 delayN=t-Ntimes(N(i,1))-163+delayN;
 delete(Ncar(N(i,1)))
 rowsN=rowsN-1;
 N=N(1:rowsN,:);
else %N car is still in system, we will have to
 %reset its y-data. There are several cases.

Note: The ‘delay’ that is added to the ‘delayN’ variable above equals the
difference in the actual time the car spent in the system less the time it
would take to run the same course at normal speed (as if there were no stop
sign). For example, if the northbound car had index iN=8, the time the car
spent in the system is NtimesDep(8) – Ntimes(8). This time corresponds to
when the vehicle’s front end was at position y = -6 + dx until it reached y =
6 + 4 ⋅ dx. Since dx = .3/4, we get 160dx = 12, so it would take 163 time
units for a car to run this course at normal speed. We ignore round-off
errors arising from rounding arrival times to their floors of the discrete time
units.

 We will declare the “speed up” (clearing) zone of the
intersection to be when the front of the car is in the range y = -0.5
to y = 1. The following commands will introduce the gap between
the current car and it’s immediate predecessor (if it has one):

front=N(i,2); back=front-4*dx;
 if i<rowsN %another N car in system is in front
 gap=N(i+1,2)-4*dx-front;
 end

When a car is out of the speed up zone, the treatment is quite
simple (no possible traffic), we just need to reset the ‘justcN’
variable back to 0, in case the car “just enters” into the zone:

if front>1 %out of speed up zone
 N(i,2)=N(i,2)+dx;
 if front<1+2*dx & justcN==1,justcN=0; end

SCSC '04 51 ISBN: 1-5655-283-0

 The speed up zone is handled by the code below, we
(realistically) give the car a linear increase in speed (with even a
slight overshoot in speed at the end). We also add in provisions to
change the intersection priority variables when the car just leaves
the clearing zone.

elseif front>-.5 & front <=1 %speed up zone
 N(i,2)=N(i,2)+dx*(front+.85)/1.5;
 if busyflag==1&justcN==0&front>.5+4*dx
 %N car just clears
 justcN=1; busyflag=0; tracker=tracker(2:end);
 end

 Before moving on to updating the north/southbound cars, we
will need to form two sets SN and SS that will help us to later see
if any north/southbound cars will be able to clear the intersection.
We will give only the construction of SN, that for SS is similar.
The set SN will be nonempty precisely when it is unsafe for a
northbound car to cross the intersection. It will consist of indices
of any eastbound car whose front is in the range x = -2.75 to x = .5
+ 4dx (see Figure 2) as well as the indices of any westbound cars
in the corresponding “danger zone”.

SN=[]
if ~isempty(E)
 SN=find(E(:,2)>-2.75 & E(:,2)<.5+4*dx);, end
if ~isempty(W),
SN=union(SN,find(W(:,2)<3 & W(:,2)>-.5));, end

 We set the “slow down zone” for the stop sign to be within the
ranges y = -1.5 to y = -.58. The program segment below takes care
of the pre-slow down zone. The case where traffic is backed up
will result in a slower speed increment depending on the gap to the
next car. In slowing down, the minimum gaps between cars is
allowed to (realistically) decrease down to 0.05 (=2/3 dx).

elseif front<-1.5 %before slow down zone
 if i==rowsN %no gap
 N(i,2)=N(i,2)+dx;
 elseif gap>=6*dx
 N(i,2)=N(i,2)+dx;
 else, N(i,2)=N(i,2)+dx*(gap-.05)/(6*dx);
end

 When the car is in the slow down zone, elements of the
previous two cases are applied to produce the code segment below.

elseif front>=-1.5 & front<-.58
 %slow down for stop zone
 if i==rowsN %no gap
 N(i,2)=N(i,2)+dx*(-.5-front);
 elseif gap>=6*dx
 N(i,2)=N(i,2)+dx*(-.5-front);
 else
 N(i,2)=N(i,2)+dx*(-.5-front)*(gap-.05)/(6*dx);
 end

 This takes care of all cases except when the car is actually at
the stop sign. The code below takes care of this final case.

else %N car is on stop line, driver needs to wait
 %for clearing/turn
if sum(ismember(tracker,1))==0,
 tracker=[tracker 1];, end
if busyflag==1&sum(ismember(tracker(2:end),1))==0
 tracker=[tracker 1]; end
if busyflag==0&tracker(1)==1&isempty(SN) %go
 N(i,2)=N(i,2)+.09; busyflag=1; end
%else stay put
end

 As all cases having been taken care of, we may now update
the graphic of the current car ‘set(Ncar(N(i,1)),
'YData', N(i,2)+NcarY)’, and end the loops.

(ii) Check for any New Cars that Will Enter the System:
 For east/westbound cars, the procedure is quite
straightforward, the MATLAB code is demonstrated below for
eastbound cars.

 if nextE<t+1 %need to add a new first row of E and
 %update other variables
 E=[iE -6+dx; E]; iE=iE+1; rowsE=rowsE+1;
 if iE<=length(Etimes), nextE=Etimes(iE);, end
 %next, install graphic w/ handle
Ecar(E(1,1))=fill(E(1,2)+EcarX,EcarY,'r',...
'EdgeColor', 'None');

 The treatment for north/southbound cars needs to take into
consideration the gap between the front of the new car and the end
of its immediate predecessor (if there is one). If the gap exceeds
10dx, the treatment is as above, but for smaller gaps, the speed
should be decreased (as was done in some of the previous code
elements). If the gap is too small, we treat this as a traffic
overflow (it would correspond to a backup of approximately 16
cars). In such a case, we would end the program with either an
error message (“traffic jam”), or give an output of an infinite
delay. We leave this choice and the remaining writing of this code
segment to the reader. Of course, larger backups could be
accommodated by using an intersection with a longer Y Avenue.

 The final MATLAB segment below will compute the current
average delay and display it on the graphic window.

delay=delayN+delayS;
 if delay>0
 NumOutCars=iE+iW+iN+iS-rowsE-rowsW-rowsN-rowsS;
 AvgWait=delay/NumOutCars;
set(AvgDelayTracker,'String',num2str(AvgWait,5));
 end
 drawnow

CONCLUSIONS
 Once your programs have been debugged to work well, the
graphics can be disabled and simulations can be run for time
periods of over 100,000 du’s (which equates to roughly an 8 hour
real time simulation) in a few minutes on a personal computer.
We ran 20 such simulations for each flow rate ranging from fx = fy
= 1 to 6.5 in increments of 0.5, and used the means of the resulting
outputted sets to obtain the plot shown in Figure 3. The standard
deviations for each such data set were tolerable, ranging from
about 2.5% to about 8%. The variances clearly reduced in a nice
accordance with the central limit theorem as the length of the
simulation increased. We took the average wait time to be infinite
if more than half of the 20 trials resulted in a traffic overflow in
the program (meaning about 16 cars were queued up at one point).
A suitably modified and more lengthy simulation could be used to
discern the threshold traffic flows for actual unstable traffic control
with a given system versus a very long average waiting time.

 It seems quite intuitive that if a four-way stop configuration
were ever to be more efficient than a two-way system with the
equivalent traffic flows, then the same should be true in an equal
traffic flow situation for the two roads. Even for such a plausible
statement, an analytic proof does not seem to be available. In
Figure 4, we give some simulated evidence for validity of this
statement. (Of course, in cases where the flows are different, it is
clear that the stop signs on a two-way system should be placed on
the road with less traffic).

SCSC '04 52 ISBN: 1-5655-283-0

1 2 3 4 5 6 7
0

50

100

150

Inf

traffic flow rate/all directions

av
er

ag
e

tim
e

lo
st

 p
er

 c
ar

Traffic Jam

4−way stop
2−way stop

Figure 3 A plot of simulated delay times for the four-way stop (solid) and
the two-way stop (dotted) controlled intersection as a function of the
uniform flow rates.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140

160

180

traffic flow rate on Y Avenue (with stop signs)

av
er

ag
e

tim
e

lo
st

 p
er

 c
ar

4−way stop
2−way stop

Figure 4 A plot of simulated delay times for the four-way stop (solid) and
the two-way stop (dotted) controlled intersection as a function of the traffic
flow rates on Y Avenue. The traffic flow on X street is maintained at a
constant rate of 6. Notice how the differences for the two systems are even
more extreme than in Figure 3.

REFERENCES
[1] Gerlough, D. L., Simulation of freeway traffic on a general-

purpose discrete variable computer, PhD Dissertation,
UCLA (1955)

[2] McDonald, M., M. Brackstone, and B. Sultan, Instrumented

vehicle studies of traffic flow models, Proceedings of the
Third International Symposium on Highway Capacity,
Volume 2, (editor: R. Ryysgaard), pp. 755-774.
Copenhagen Transportation Research Board and Danish
Road Directorate, Copenhagen (1998)

[3] Sayed, D., Estimating the safety of
unsignalizedintersections using traffic conflicts,
Proceedings of the third international conference on
intersections without traffic signals, (editor: M. Kyte), pp.
230-235 Portland, OR (1997)

[4] Pursula, M., Simulation of Traffic Systems - An Overview,

Journal of Geographic Information and Decision Analysis,
vol.3, no.1, pp. 1-8 (1999)

[5] Stanoyevitch., A., An Introduction to MATLAB with

Numerical Preliminaries, John Wiley & Sons, New York, to
appear in late (2004)

[6] Ross, S., Simulation-Third Edition, Academic Press, San

Diego (2002)

Biography
Alexander Stanoyevitch earned his PhD in 1990 from the
University of Michigan-Ann Arbor in mathematical analysis.
Since then, except for a recent visiting appointment at the
University of Missouri-Columbia, he has worked in academia in
the tropics (at the Universities of Hawaii and Guam). He has
published numerous papers in geometric analysis and partial
differential equations. He uses MATLAB (extensively) in his
teaching as well as his research, and has recently completed two
MATLAB-based books (one on numerical differential equations
and the other a general introduction to the software) that will soon
be published by John Wiley & Sons. Dr. Stanoyevitch enjoys
traveling and has spent extended periods visiting mathematical
institutes in Finland, France, Norway, Germany, The Czech
Republic, and Ireland.

SCSC '04 53 ISBN: 1-5655-283-0

	TITLE PAGE
	SCSC Table of Contents
	ACROBAT HELP
	Minimizing Lost Time at Automobile Intersections
	Keywords:
	Abstract:
	PREPARATION AND THE ARRIVAL PROCESS
	CREATION OF THE SIMULATION PROGRAMS
	CONCLUSIONS
	REFERENCES
	Biography

