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Abstract. We estimate the magnitude of the gradient of the solution
to the Dirichlet problem, with Lipschitz boundary data, for the Laplace
equation on a bounded domain Ω in R

n. Under certain regularity as-
sumptions on ∂Ω, for x ∈ Ω we establish the estimate

|∇u(x)| ≤ C(n, Ω)M log
diameter(Ω)

dist(x, ∂Ω)
,

where M is the Lipschitz constant of the boundary data.

1. INTRODUCTION

Let Ω be a domain in R
n, n ≥ 2, and let ϕ : ∂Ω −→ R be bounded and

Lipschitz continuous on ∂Ω. G. Hardy and J. Littlewood [4], [5] established
the following estimate when Ω is the upper half space

R
n
+ := {x = (x1, x2, . . . , xn) ∈ R

n : xn > 0} .

Theorem 1 (Hardy & Littlewood). If Ω = R
n
+ and ϕ is bounded and Lips-

chitz continuous on ∂Ω, then the bounded solution u ∈ C (
Ω

)
of the Dirichlet

problem ∆u = 0 in Ω, u = ϕ on ∂Ω satisfies

(1.1) |∇u(x)| = O (log 1/xn) , as xn → 0+ .

We will obtain a more precise version of (1.1) for bounded domains Ω,
with xn replaced by the distance from x to ∂Ω.

Recall that a domain Ω is a Ck-domain, where k is a nonnegative integer,
if ∂Ω is locally representable by graphs of Ck functions in n − 1 variables.
As is well known, for bounded C1 domains the Dirichlet problem u ∈ C(Ω),
∆u = 0 in Ω, u = ϕ on ∂Ω is uniquely solvable provided ϕ is continuous on
∂Ω.

The following theorem is our main result. (We let d(Ω) denote the diam-
eter of Ω, and d(x, ∂Ω) the distance from x to ∂Ω.)

Theorem 2. Let Ω be a bounded C2-domain in R
n, and let ϕ : ∂Ω −→ R

satisfy the Lipschitz condition

|ϕ(z) − ϕ(ζ)| ≤M |z − ζ| for all z, ζ ∈ ∂Ω .
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Let u solve the Dirichlet problem u ∈ C
(
Ω

)
, ∆u = 0 in Ω, u = ϕ on ∂Ω.

Then there exists a positive constant C(n,Ω) such that, for all x in Ω,

(1.2) |∇u(x)| ≤ C(n,Ω)M log
d(Ω)

d(x, ∂Ω)
.

In the last section of the paper we show how, in dimension n = 2 and
in the case of Jordan domains, the C2 condition can be relaxed to a Dini-
smooth condition on ∂Ω.

Perhaps the first significant results concerning the behaviour of the deriva-
tives of a harmonic function near the boundary of a domain were established
by Kellogg [7]. He showed that, (summarizing roughly) in a three dimen-
sional domain near a boundary element z = f(x, y), the first order deriva-
tives of a harmonic function u are continuous up to the boundary provided
that the first order derivatives of f and of u on the boundary itself are Dini
continuous; moreover, if the first order derivatives of f and u on the bound-
ary are Hölder continuous with exponent less than 1, then ∇u is Hölder con-
tinuous up to the boundary. The well-known Schauder theory (see chapter
6 of [3]) establishes analogous and more general results for uniformly ellip-
tic partial differential equations, giving Hölder bounds for solutions u and
their derivatives inside a domain in terms of Hölder norms of the boundary
values of u and the nonhomogeneous term of the equation. These so-called
“Schauder estimates” have been improved and extended by many authors,
but generally for a second order equation boundary values are required to
lie in the Hölder class C2,α(∂Ω). D. Gilbarg and L. Hörmander [2] extended
the Schauder theory to include conditions of lower regularity on the bound-
ary values of the solution, as well as on the boundary of the domain and
the coefficients of the equations. G. Troianiello [10] has weakened further
some conditions of Gilbarg and Hörmander. However, it appears that none
of these results, even for the special case of the Laplace equation, yield a
logarithmic growth estimate on ∇u near the boundary when u is assumed
only Lipschitz continuous on the boundary.

2. DOMAINS IN R
n

We require a local and more quantitative version of the Hardy-Littlewood
result of Theorem 1. For a point x in R

n
+, we will sometimes decompose it

as x = (y, s) where y = (x1, . . . , xn−1) ∈ R
n−1 and s = xn ∈ R. Given a

bounded continuous function ϕ on R
n−1, the bounded harmonic function

u in R
n
+, continuous in the closure of R

n
+, and satisfying u(y, 0) = ϕ(y) is

uniquely determined and prescribed by the Poisson integral formula,

(2.1) u(x) =
2
ωn

∫
Rn−1

s(
|y − z|2 + s2

)n/2
ϕ(z) dz ,

where ωn is the surface area of the unit ball in R
n. (See for example [1] or

[9].)
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Lemma 1. Suppose ϕ is measurable and real valued on R
n−1, and that there

are constants K ≥ 0, M ≥ 0, ε > 0 such that, for z ∈ R
n−1,

(i) |ϕ(z)| ≤ K,
(ii) |ϕ(z) − ϕ(0)| ≤M |z| for |z| < ε.

Then there are positive constants C(n) and C(n, ε) such that the Poisson
integral u given by (2.1) satisfies

(2.2) |∇u(0, s)| ≤ C(n)
[
K

ε
+M log

1
s

]
, for 0 < s < C(n, ε) .

Proof. First, for s > 0 we use (2.1) to compute

∂u(0, s)
∂s

=
2
ωn

∫
Rn−1

(
|z|2 + (1 − n)s2

)(
|z|2 + s2

)−1−n/2
ϕ(z) dz

= I(s) + J(s) + L(s) ,

where

I(s) =
2
ωn

∫
|z|≥ε

(
|z|2 + (1 − n)s2

)(
|z|2 + s2

)−1−n/2
ϕ(z) dz ,

J(s) =
2
ωn

∫
|z|≤ε

(
|z|2 + (1 − n)s2

)(
|z|2 + s2

)−1−n/2
[ϕ(z) − ϕ(0)] dz ,

L(s) =
2
ωn

∫
|z|≤ε

(
|z|2 + (1 − n)s2

)(
|z|2 + s2

)−1−n/2
ϕ(0) dz .

To estimate these integrals we will use the identity(
|z|2 + (1 − n)s2

)(
|z|2 + s2

)−1−n/2
= −∇z ·

[
z

(
|z|2 + s2

)−n/2
]
.

We assume 0 < s ≤ ε/
√
n− 1, so that |z|2 + (1− n)s2 ≥ 0 in I(s). Using

assumption (i), and letting dσ signify integration with respect to surface
measure, we find that

|I(s)| ≤ C(n)K
∫
|z|≥ε

(
|z|2 + (1 − n)s2

)(
|z|2 + s2

)−1−n/2
dz

= C(n)K lim
R→∞

∫
ε≤|z|≤R

−∇z ·
[
z

(
|z|2 + s2

)−n/2
]
dz

= C(n)K lim
R→∞

[∫
|z|=ε

−
∫
|z|=R

][
z

(
|z|2 + s2

)−n/2
]
· z|z| dσ(z)

= C(n)K
∫
|z|=ε

ε
(
ε2 + s2

)−n/2
dσ(z) ≤ C(n)K/ε .

(When n = 2 the surface integrals above are replaced by endpoint evalua-
tions, but the end result is the same.)
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With similar calculations, we produce the bound

|L(s)| ≤ C(n)K

∣∣∣∣∣
∫
|z|≤ε

∇z ·
[
z

(
|z|2 + s2

)−n/2
]
dz

∣∣∣∣∣
= C(n)K

∣∣∣∣∣
∫
|z|=ε

[
z

(
|z|2 + s2

)−n/2
]
· z|z| dσ(z)

∣∣∣∣∣
= C(n)K

∫
|z|=ε

ε
(
ε2 + s2

)−n/2
dσ(z) ≤ C(n)K/ε .

Finally, still assuming 0 < s ≤ ε/
√
n− 1, we use (ii) to estimate

|J(s)| ≤ C(n)M
∫
|z|≤ε

∣∣∣|z|2 + (1 − n)s2
∣∣∣ (|z|2 + s2

)−1−n/2 |z| dz

≤ C(n)M
∫
|z|≤ε

|z|
(
|z|2 + s2

)−n/2
dz

≤ C(n)M
∫ ε

0
ρn−1

(
ρ2 + s2

)−n/2
dρ

≤ C(n)M
∫ ε

0
ρn−1 (ρn + sn)−1 dρ

≤ C(n)M [log (εn + sn) − log sn]

≤ C(n)M
[
log (2εn) + n log

1
s

]
.

Combining our three estimates we conclude that, for 0 < s ≤ ε/
√
n− 1,∣∣∣∣∂u(0, s)∂s

∣∣∣∣ ≤ C(n)
K

ε
+ C(n)M

[
log (2εn) + n log

1
s

]
.

Next, from (2.1) we calculate

∇yu(0, s) = ns
2
ωn

∫
Rn−1

z
(
|z|2 + s2

)−1−n/2
ϕ(z) dz .

With the observation∫
|z|≤ε

z
(
|z|2 + s2

)−1−n/2
dz = 0 ,

we may write

∇yu(0, s) = ns
2
ωn

∫
|z|>ε

z
(
|z|2 + s2

)−1−n/2
ϕ(z) dz

+ ns
2
ωn

∫
|z|≤ε

z
(
|z|2 + s2

)−1−n/2
[ϕ(z) − ϕ(0)] dz ,



GRADIENT BOUNDS 5

and use (i) and (ii) to estimate

|∇yu(0, s)| ≤ C(n)Ks
∫
|z|>ε

|z|−1−n dz

+C(n)Ms

∫
|z|≤ε

|z|2
(
|z|2 + s2

)−1−n/2
dz

≤ C(n)
Ks

ε2
+ C(n)M

∫
Rn−1

|y|2
(
|y|2 + 1

)−1−n/2
dy

≤ C(n)
Kε/

√
n− 1
ε2

+ C(n)M ≤ C(n)
K

ε
+ C(n)M .

In summary, writing ∇u = (∇yu, ∂su), we have verified that, for 0 < s ≤
ε/
√
n− 1,

|∇u(0, s)| ≤ C(n)
K

ε
+ C(n)M

[
n log

1
s

+ log (2εn) + 1
]
.

Our desired estimate (2.2) follows, provided that 0 < s ≤ C(n, ε) for some
suitably small constant C(n, ε). �

Our next step is to transfer the above result to balls. We let en denote
the unit vector (0, . . . , 0, 1) in R

n.

Lemma 2. Suppose ϕ is continuous and real valued on the boundary of an
open ball B of radius a in R

n, let p be a point on ∂B, and suppose further
that there are constants K, M , and ε (0 < ε ≤ 2a) such that, for z on ∂B,

(i) |ϕ(z)| ≤ K,
(ii) |ϕ(z) − ϕ(p)| ≤M |z − p| for |z − p| < ε.

Let u be the solution of the Dirichlet problem u ∈ C
(
B

)
, ∆u = 0 in B, u = ϕ

on ∂B. Then there are positive constants C(n) and C(n, ε, a) such that, for
x on the radial line between p and the center of B and 0 < d(x, ∂B) <
C(n, ε, a),

(2.3) |∇u (x)| ≤ C(n)
[
K

ε
+M log

2a
d(x, ∂B)

]
.

Proof. First we consider a ball B of diameter 1. For convenience we translate
and rotate B so that its center is en/2 and the boundary point of interest is
the top point p = en. (Such a change of variables does not alter the Laplacian
of u nor the magnitude of its gradient.) Without loss of generality we may
assume ϕ(p) = 0, since subtracting the constant ϕ(p) from ϕ (and hence
also from u) will not alter the constant M in (ii) and will at most double
the constant K of (i), while the gradient of u will remain the same.

Let ρ be reflection with respect to the unit sphere centered at the origin
in R

n; i.e, ρ(x) = x/ |x|2 for x ∈ R
n\{0}. It is not hard to verify that

ρ(B) = U , where U is the half space consisting of points in R
n whose last

coordinate is larger than 1. Also, ρ (∂B − {0}) = ∂U and ρ(p) = p. Note
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also that ρ = ρ−1 so that ρ(U) = B. Since u is harmonic in B, its Kelvin
transform,

v(x) := |ρ(x)|n−2 u (ρ(x)) = |x|2−n u
(
x/ |x|2

)
,

is harmonic in U . We define ψ on ∂U by

ψ(z) := |ρ(z)|n−2 ϕ (ρ(z)) = |z|2−n ϕ
(
z/ |z|2

)
;

then v is a solution in U of the Dirichlet problem v ∈ C
(U)

, ∆v = 0 in U ,
v = ψ on ∂U . Moreover, since |x| ≥ 1 on U we have both |ψ| ≤ K on ∂U
and |v| ≤ K on U .

In order to apply Lemma 1 to v, we need an analog of (ii) to hold for ψ.
If z ∈ U and |z − p| < ε/3 then, using |z| ≥ 1 and |p| = 1, we find that

|ρ(z) − ρ(p)| =
∣∣∣z |z|−2 − p |p|−2

∣∣∣
= |z|−2 |p|−2

∣∣∣z (
|p|2 − |z|2

)
+ (z − p) |z|2

∣∣∣
≤ |z|−2 |p|−2

[
|z| |p− z| (|p| + |z|) + |z − p| |z|2

]
=

[
|z|−1 |p|−1 + 2 |p|−2

]
|z − p| ≤ 3 |z − p| < ε ;

therefore, using (ii) and ϕ(p) = ψ(p) = 0, for |z − p| < ε/3 and z ∈ ∂U we
have

|ψ(z) − ψ(p)| = |ψ(z)| = |z|2−n |ϕ (ρ(z))| ≤ |ϕ (ρ(z))|
= |ϕ (ρ(z)) − ϕ (ρ(p))| ≤M |ρ(z) − ρ(p)| ≤ 3M |z − p| .

If we translate U down one unit then U becomes the half space xn > 0 and
v becomes the Poisson integral of ψ. We apply Lemma 1 with ε replaced by
ε/3 and M by 3M , and conclude that

(2.4) |∇v(sen)| ≤ C(n)
[
K

ε
+M log

1
s− 1

]
, for 0 < s− 1 < C(n, ε) .

A computation shows that

∇u(x) = (2 − n)x |x|−n v (ρ(x)) + |x|−n ∇v (ρ(x))(2.5)

− 2x |x|−2−n [x · ∇v (ρ(x))] .

We take x = ten with 1/2 < t < 1; then ρ(x) = en/t, and we may use (2.4)
and (2.5) to conclude that, if 0 < 1/t− 1 < C(n, ε),

|∇u (ten)| ≤ (n− 2)t1−nK + 3t−nC(n)
[
K

ε
+M log

1
1/t− 1

]
.

As 1/2 < t < 1 and 0 < ε ≤ 2a = 1, this inequality leads to

|∇u (ten)| ≤ C(n)
[
K

ε
+M log

1
1 − t

]
.
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Finally, since d(x, ∂B) = |x− en| = 1−t, and the condition 1/t−1 < C(n, ε)
reduces to d(x, ∂B) < C(η, ε)/ (1 + C(n, ε)), we have verified the lemma for
balls of radius 1/2.

To handle a ball B of general radius a we make a change of variables. We
may assume B is centered at the origin. We define functions ψ and v as

ψ(z) = ϕ(2az) , v(x) = u(2ax) ,

so that ψ is defined on the boundary of the ball D of radius 1/2 centered
at the origin, and v solves the Dirichlet problem on this ball with boundary
data ψ. Then |ψ| ≤ K and, setting q = p/2a, we have for |z − q| < ε/2a
that |2az − p| < ε, and hence

|ψ(z) − ψ(q)| = |ϕ(2az) − ϕ(p)| ≤M |2az − p| = 2aM |z − q| .

Applying the result for balls of radius 1/2 to v, with ε replaced by ε/2a and
M by 2aM , we infer that

|∇v(y)| ≤ C(n)
[
2aK
ε

+ 2aM log
1

d(y, ∂D)

]
,

provided that y lies on the radial line between q and the origin, and 0 <
d(y, ∂D) < C(n, ε/2a). Setting x = 2ay, we have d(x, ∂B) = (2a)d(y, ∂D),
and

2a |∇u(x)| ≤ C(n)
[
2aK
ε

+ 2aM log
2a

d(x, ∂B)

]
,

provided that 0 < d(x, ∂B) < 2aC(n, ε/2a). Division by 2a gives (2.3), for
0 < d(x, ∂B) < C(n, ε, a) and x on the radial line from the center of B to
p. �

In order to pass from balls to more general domains we will employ a
method of Kellogg [7] featuring certain superharmonic dominating functions.
For x in R

n we set r(x) := |x| and θ(x) := arccos (xn/ |x|). For α ∈ (0, π/2)
we let Cα be the open set

Cα := {x ∈ R
n : |x| > 0 and θ(x) < α+ π/2} .

Lemma 3. For any λ ∈ (1/2, 1) there exists α ∈ (0, π/2) and a correspond-
ing function w of the form w(x) = rλf(cos θ) which is continuous on Cα,
positive on Cα\{0}, and of class C2 in Cα with ∆w ≤ 0 there.

Proof. The existence of such a barrier function, and of more general barrier
functions, is discussed in section 4 of [6]. �

With these preliminaries, we may now prove our main theorem.

Proof of Theorem 2 In view of the assumed smoothness of ∂Ω, there
exists a number a such that 0 < a ≤ 1/2 and, at any point p of ∂Ω, the
two closed balls of radius a tangent internally and externally to ∂Ω at p
lie entirely inside Ω and outside Ω, respectively, except at the point p. We
consider an arbitrary point p on ∂Ω, and apply a rigid motion so that p = 0
and ∂Ω near 0 is represented by the graph, xn = f(x1, . . . , xn−1), of a C2
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function f with ∇f(0) = 0 and with Ω near 0 lying above the graph of
f . Since the hypotheses and conclusions of the theorem are unaffected by
perturbing ϕ with an additive constant, we may assume ϕ(0) = 0 and hence,
by the Lipschitz condition,

(2.6) |ϕ(z)| ≤M |z| ≤Md(Ω) , for z ∈ ∂Ω .

Fix λ ∈ (1/2, 1), and let Cα and w denote the corresponding set and
function described in Lemma 3. Then there exist positive constants C1(n)
and C2(n) such that

(2.7) C1(n) |x|λ ≤ w(x) ≤ C2(n) |x|λ for all x in Cα .

Moreover, a geometric argument shows that, if |x| ≤ δ := 2a sinα and
x /∈ Cα, then x lies in the open ball of radius a tangent externally to ∂Ω at
0, and hence outside Ω; consequently, if x ∈ Ω and |x| ≤ δ, then x ∈ Cα.
Note that 0 < δ < 2a ≤ 1. If z ∈ ∂Ω and |z| ≤ δ, then (2.6) and (2.7) yield

|u(z)| = |ϕ(z)| ≤M |z| ≤M |z|λ ≤ M

C1(n)
w(z) .

On the other hand, if x ∈ Ω and |x| = δ, then (2.6), (2.7), and the maximum
principle give

|u(x)| ≤ max
∂Ω

|ϕ| ≤Md(Ω) ≤ Md(Ω)
C1(n)δλ

w(x) .

Combining the last two inequalities and (2.7), we apply the maximum prin-
ciple for subharmonic functions in the intersection of Ω with the open ball
of radius δ about the origin to conclude that, for some positive constant
C(n,Ω),

(2.8) |u(x)| ≤ C(n,Ω)Mw(x) ≤ C(n,Ω)M |x|λ , if x ∈ Ω and |x| ≤ δ .

Next let B denote the ball of radius a internally tangent to Ω at 0. Near
0, ∂B is represented by the graph of a C2 function xn = g(x1, . . . , xn−1),
satisfying |g(y)| ≤ |y|2 /a for |y| < a. By the smoothness and compactness
of ∂Ω, and the fact that ∇f(0) = 0, there are positive constants η and
D, depending only on Ω and not on the point p originally chosen, such
that |f(y)| ≤ D |y|2 ≤ |y| for |y| ≤ η. We may stipulate also that η <
δ/2 (< a ≤ 1/2). Let z ∈ ∂B with |z| < η, and set z = (y, g(y)), ζ =
(y, f(y)), where |y| ≤ |z| < η. Then

|u(ζ)| = |ϕ(ζ)| ≤M |ζ| ≤M (|y| + |f(y)|) ≤ 2M |y| ≤ 2M |z| .

Also,

|z − ζ| = |g(y) − f(y)| ≤ |g(y)| + |f(y)| ≤ |y|2 /a+ |y| ≤ 2 |y| < 2η < δ .
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We apply (2.8) translated to the boundary point ζ (instead of 0), and get

|u(z) − u(ζ)| ≤ C(n,Ω)M |z − ζ|λ = C(n,Ω)M |g(y) − f(y)|λ

≤ C(n,Ω)M (|g(y)| + |f(y)|)λ ≤ C(n,Ω)M
(
|y|2 /a+D |y|2

)λ

≤ C(n,Ω)M
(
a−1 +D

)λ |y|2λ ≤ C(n,Ω)M |z|2λ .

But 2λ > 1 while |z| < 1; thus by the triangle inequality we have

|u(z)| ≤ |u(ζ)| + |u(z) − u(ζ)| ≤ C(n,Ω)M |z| ,

valid for z ∈ ∂B with |z| < η.
For z ∈ ∂B we have also |u(z)| ≤ max |ϕ| ≤ Md(Ω). We apply Lemma 2

to the restriction of u to B, with K replaced by Md(Ω), M by C(n,Ω)M ,
and ε by η = η(Ω), and conclude that

|∇u(x)| ≤ C(n)
[
Md(Ω)
η(Ω)

+ C(n,Ω)M log
2a

d(x, ∂B)

]

≤ C(n,Ω)M log
d(Ω)

d(x, ∂B)
,

provided that x lies on the radial line from 0 to the center of B and 0 <
d(x, ∂B) ≤ ε for some sufficiently small ε depending on n and Ω.

Now, for arbitrary x in Ω with d(x, ∂Ω) ≤ ε, there is a ball B centered at
x and touching ∂Ω only on ∂B. We may adjust B, if necessary, so that its
radius is a and x lies on the normal line to ∂Ω, between the point of tangency
and the center of B. Then d(x, ∂B) = d(x, ∂Ω), and we have verified (1.2)
for such x.

Next suppose x ∈ Ω but d(x, ∂Ω) ≥ ε = ε(n,Ω). By a well known gradient
estimate for harmonic functions (see, for example, section 2.7 of [3]),

|∇u(x)| ≤ C(n)max |u|
d(x, ∂Ω)

.

But max |u| ≤Md(Ω), while 2 ≤ d(Ω)/d(x, ∂Ω) ≤ d(Ω)/ε; therefore,

|∇u(x)| ≤ C(n)M
d(Ω)

d(x, ∂Ω)
≤ C(n,Ω)M log

d(Ω)
d(x, ∂Ω)

,

and (1.2) is verified for all x in Ω.

We give an example showing that one cannot relax too much in Theorem
2 the smoothness properties of ∂Ω; indeed, if we assume the same boundary
regularity as we do on the boundary function, the conclusion of Theorem 2
is no longer valid.

Recall that a Lipschitz domain in R
n is a domain whose boundary is

locally representable by graphs of Lipschitz continuous functions in n − 1
variables.
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Example 1. For any n ≥ 2 there exists a bounded Lipschitz domain Ω in
R

n and a Lipschitz continuous function ϕ on ∂Ω for which the solution to
the Dirichlet problem, u ∈ C(Ω), ∆u = 0 in Ω, u = ϕ on ∂Ω, does not
satisfy |∇u(x)| = O (log 1/d(x, ∂Ω)) as d(x, ∂Ω) → 0.

First we produce a domain Ω in the plane having the properties described.
It is easily checked that in the right half plane the function

w(x, y) = arctan
y − 2
x

,

a branch of arg(z − 2i), is harmonic, with

w(0, y) =
{

π/2 , if y > 2 ,
−π/2 , if y < 2 , , wx(x, 0) =

2
4 + x2

.

Fix α with 1 < α < 2, and consider the Lipschitz domain

Ω =
{
z = reiθ : 0 < r < 1 and |θ| < πα/2

}
,

and the function u defined in Ω according to

u(z) = w
(
z1/α

)
, w(z) = u (zα) .

The mapping z −→ zα maps the right half of the open unit disk conformally
onto Ω, and it follows that u is harmonic in Ω and Lipschitz continuous up
to ∂Ω. (In fact, u ≡ −π/2 on the straight portions of ∂Ω, and u can be
extended as a C∞ function in a neighborhood of the curved portion of ∂Ω.)
Observe that u(x, 0) = w(t, 0) where t = x1/α, and for 0 < x ≤ 1,

ux(x, 0) = wt(t, 0)
1
α
x(1/α)−1 =

2
4 + x2/α

x(1/α)−1 ≥ 2
5
x(1/α)−1 .

But d ((x, 0), ∂Ω) = x for 0 < x < 1/2, so |∇u(z)| �= O (log 1/d(z, ∂Ω)) in Ω.
It is now easy to construct an analogous example in R

n when n > 2. Let
Ω be our domain in R

2, and in R
n let Ωn be the bounded Lipschitz domain

Ωn = Ω × (−1, 1)n−2 = Ω × (−1, 1) × (−1, 1) × . . .× (−1, 1) .

Define also v(x1, . . . , xn) = u(x1, x2). Then v is harmonic in Ωn with Lips-
chitz boundary values, but with

|∇v(x1, 0, . . . , 0)| = |∇u(x1, 0| �= O

(
log

1
x1

)
as x1 → 0 .

3. Domains in R
2

In certain planar domains we may use results from complex analysis to
relax somewhat the C2 requirement on the boundary. We will say that a
bounded Jordan domain Ω in the plane is Dini smooth provided it has a
parametrization w : ∂D −→ ∂Ω (D = unit disk), with Dini continuous
derivative w′ never vanishing on ∂D. (Thus, if

ω(t) := sup
{∣∣w′ (θ1) − w′ (θ2)

∣∣ : eiθ1 , eiθ2 ∈ D, |θ1 − θ2| ≤ t
}

,
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then ∫ 1

0

ω(t)
t

dt <∞ .)

Theorem 3. Let Ω be a bounded Dini smooth Jordan domain in the plane,
let ϕ : ∂Ω −→ R be Lipschitz continuous with Lipschitz constant M , and let
u solve the Dirichlet problem u ∈ C(Ω), ∆u = 0 in Ω, u = ϕ on ∂Ω. Then
there exists a positive constant C(Ω) such that, for all z in Ω,

(3.1) |∇u(z)| ≤ C(Ω)M log
d(Ω)

d(z, ∂Ω)
.

Proof. Let f map Ω conformally onto the upper half plane H. It is well
known, since Ω is a Jordan domain, that f extends to a homeomorphism
of the closures, f : Ω −→ H, and furthermore, since Ω is Dini smooth, f ′
extends continuously to Ω where it is never zero. (See [8], Theorem 3.5,
page 48.) It follows that v := u ◦ f−1 is a bounded harmonic function on H,
continuous on H, and has boundary data v = ψ := ϕ◦f−1 on ∂H. Since the
derivative

(
f−1

)′ is uniformly bounded, for ψ on ∂H we have the Lipschitz
condition

|ψ(x1) − ψ (x2)| =
∣∣ϕ [

f−1 (x1)
] − ϕ

[
f−1(x2)

]∣∣ ≤M
∣∣f−1 (x1) − f−1(x2)

∣∣
≤M

∥∥∥(
f−1

)′∥∥∥
∞
|x1 − x2| = MC(Ω) |x1 − x2| .

Subtracting a constant from ϕ if necessary, we may assume that ϕ vanishes
somewhere on ∂Ω; then |ϕ| ≤Md(Ω) on ∂Ω, implying that also |ψ| ≤Md(Ω)
on ∂H, |u| ≤ Md(Ω) on Ω, and |v| ≤ Md(Ω) on H. Next, noting that
the result of Lemma 1 is translation invariant, we apply Lemma 1 with K
replaced by Md(Ω), M by MC(Ω), ε by 1, and conclude that there are
positive constants C and δ such that, for z ∈ H and d(z, ∂H) < δ,

|∇v(z)| ≤ C

[
Md(Ω) +MC(Ω) log

1
d(z, ∂H)

]
.

We may assume δ ≤ 1/e, so that this inequality simplifies to

(3.2) |∇v(z)| ≤ C(Ω)M log
1

d(z, ∂H)
, if d(z, ∂H) < δ .

Let m = m(Ω) be a number such that 0 < m < 1 and m ≤ |f ′| ≤ 1/m on
Ω. It is a consequence of the Koebe distortion theory (see Corollary 1.4 on
page 9 of [8]) that, for all z in Ω,

(3.3)
m

16
≤ d (f(z), ∂H)

d(z, ∂Ω)
≤ 16
m

.
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Set ε = mδ/16. If z ∈ Ω and d(z, ∂Ω) < ε, then (3.3) gives d (f(z), ∂H) < δ,
and then the chain rule, (3.2), and (3.3) lead to

|∇u(z)| = |∇v (f(z))| ∣∣f ′(z)∣∣ ≤ 1
m

|∇v (f(z))|

≤ C(Ω)M
m

log
1

d(f(z), ∂H)
≤ C(Ω)M

m
log

16
md(z, ∂Ω)

.

But d(Ω)/d(z, ∂Ω) ≥ 2, and so, in the case d(z, ∂Ω) < ε, (3.1) follows for
some suitable new constant C(Ω). The case d(z, ∂Ω) ≥ ε is handled exactly
as in the proof of Theorem 2. �
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