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Abstract� For a finitely connected planar domain Ω it is shown that the analytic-
Poincaré inequality ‖f(z) − f(z0)‖Lp(Ω) ≤ Ka

p (Ω)‖f ′(z)‖Lp(Ω) holds uniformly for

all holomorphic functions f on Ω (z0 ∈ Ω fixed, Ka
p (Ω) an absolute constant) if and

only if the Sobolev–Poincaré inequality ‖u(z)‖Lp(Ω) ≤ Kp(Ω)‖∇u(z)‖Lp(Ω) holds for

an absolute constant Kp(Ω) and for all u ∈ C1(Ω) whose integral over Ω is zero. This
paper extends a result of Hamilton [Ham] who established this equivalence when

1 < p < ∞.

1. Introduction

Let Ω ⊆ R2 be a domain, i.e., an open connected set, of finite area |Ω|. For an
exponent p, 1 ≤ p ≤ ∞ we say that Ω is an analytic p–Poincaré domain provided
that there exists a constant Ka

p (Ω) such that the analytic p–Poincaré inequality

(1) ‖f(z) − f(z0)‖Lp(Ω) ≤ Ka
p (Ω)‖f ′(z)‖Lp(Ω)

holds for each holomorphic function f ∈ H(Ω). Here z0 is any fixed “base point”
in Ω. It is easy to check that the validity of (1) is independent of the choice of
z0 except of course that the constant Ka

p (Ω) also depends on z0. Since z0 will be
fixed throughout we suppress this dependence. The domain Ω is called a Sobolev
p–Poincaré domain if there exists an absolute constant Kp(Ω) such that the Sobolev
p–Poincaré inequality

(2) ‖u(z) − uΩ‖Lp(Ω) ≤ Kp(Ω)‖∇u(z)‖Lp(Ω)

holds for all smooth functions u ∈ C1(Ω) ∩ Lp(Ω). We are letting uΩ denote the
average value of u over Ω, i.e.,

uΩ =
1
|Ω|

∫
Ω

u(z) dA(z).

The Poincaré inequalities are useful for an assortment of applications so it is
useful to know when Poincaré inequalities hold on a given domain Ω. We shall see
(in Section 2) that the analytic p–Poincaré inequality (1) is equivalent to the validity
of (2) with the functions u being restricted to be in H(Ω) ∩ Lp(Ω). Thus, the
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analytic Poincaré inequalities can be viewed as weaker versions of the corresponding
Sobolev–Poincaré inequalities where the “test functions” are assumed to be analytic
functions. With this formulation it is clear that if Ω is a Sobolev p–Poincaré domain
then it is also an analytic p–Poincaré domain. Hamilton [Ham] showed that the
reverse implication holds provided 1 < p <∞. Actually his result was stated with
the assumptions p = 2 and Ω is simply connected but all that his proof needs is
1 < p < ∞ (no topological assumptions on Ω are required). The main tool in
his proof is the boundedness of the Hilbert and Cauchy transforms on Lp, and
since these transforms are badly unbounded on L1 and L∞ his proof yields no
information on the borderline cases p = 1 and p = ∞. Making use of more explicit
constructions, we shall prove the following:

Main Theorem. If p = 1 or p = ∞ and if Ω ⊆ R2 is a finitely connected analytic
p–Poincaré domain, then Ω is a Sobolev p–Poincaré domain.

In proving this theorem, the point that will allow us to pass from simply con-
nected to finitely connected domains is that the finitely many components of ∂Ω
cannot work together to thwart the Poincaré inequality (either the analytic or
Sobolev version) if one of them could not do the job separately. For domains of
infinite connectivity, the interrelationships of the individual boundary components
becomes pertinent and the present approach of constructing appropriate analytic
test functions does not apply. The result should, however, still be true.

Question. Are the analytic and Sobolev p–Poincaré inequalities equivalent for ar-
bitrary planar domains of finite area.

The Sobolev p–Poincaré inequality (2) makes sense for n–dimensional domains
Ω ⊆ R

n of finite volume. These Poincaré inequalities have numerous applications,
for example, it is well known that the validity of (2) for p = 2 is tantamount to
the solvability of the Neumann problem with arbitrary data. For details on this
see §4.10 in [Maz] and §4 in [Sta]. Thus it is often required to determine if a given
domain Ω supports a p–Poincaré inequality. We have shown that in 2–dimensions
(at least for finitely connected domains) the class of test functions needed to verify
(2) can be reduced from the class of smooth functions C1(Ω) ∩ Lp(Ω) to the much
smaller class of analytic functions H(Ω) ∩ Lp(Ω). It would be interesting and
useful to know if an analogous reduction is valid in higher dimensions.

Question. For a domain Ω ⊆ Rn(n > 2) of finite volume, is it sufficient to test
the p–Poincaré inequalities (2) on the class of harmonic functions in Lp(Ω)? How
about the class of quasiconformal functions in Lp(Ω)?

2. The Case p = 1.

The first order of business will be to observe that the analytic 1–Poincaré in-
equality is equivalent to the validity of (2) with the test functions u being restricted
to lie in H(Ω) ∩ L1(Ω). Indeed for such a test function u, and a given base point
z0, the mean value property gives that

u(z0) = uB

where B ⊂ Ω is any disk centered at z0. The above equivalence is thus a conse-
quence of the following
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Lemma. If u ∈ L1(Ω) and A ⊂ Ω is a measurable set of positive area then

(
1 +

|Ω|
|A|

)−1 ∫∫
Ω

|u(x, y)− uA| dxdy ≤
∫∫
Ω

|u (x, y)− uΩ| dxdy

≤ 2
∫∫
Ω

|u (x, y) − uA| dxdy

Proof. Using the triangle inequality, we have∫∫
Ω

|u− uΩ| ≤
∫∫
Ω

(|u− uA| + |uA − uΩ|)

=
∫∫
Ω

|u− uA| + |Ω||uA − uΩ|

Now,

|uA − uΩ| =

∣∣∣∣∣∣uA − 1
|Ω|

∫∫
Ω

u (x, y)dxdy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1
|Ω|

∫∫
Ω

(u (x, y)− uA)

∣∣∣∣∣∣
≤ 1

|Ω|
∫∫
Ω

|u− uA|

Combining these two estimates produces the second inequality of the Lemma. The
first inequality is obtained in a similar fashion.

Remark. A similar argument would yield the corresponding equivalence for p–
Poincaré domains for all p ≥ 1.

Our approach to proving the Main Theorem will be to assume Ω is not a Sobolev
1–Poincaré domain and to construct explicit analytic functions which would force
the constant Ka

1 (Ω) in the analytic 1–Poincaré inequality (1) to be arbitrarily large.
To accomplish this construction we shall need some sort of geometric consequence of
Ω failing to be a Sololev 1–Poincaré domain. This will be provided by the following
geometric characterization of simply connected Sobolev 1–Poincaré domains which
appeared as part of Theorem A in [StSt].

Theorem. If Ω ⊆ R2 is a simply connected domain of finite area, then Ω is a
Sobolev 1–Poincaré domain if and only if L <∞ where

(3) L = sup
{ |Ωσ|
�(σ)

: σ a segmental crosscut of Ω
}
.
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Here Ωσ is a subdomain of Ωσ \ σ of minimal area and �(σ) denotes the length of
the segment σ. Moreover, the best (i.e. smallest) constant K1(Ω) that works in (2)
is comparable to L.

The contruction will be separated into 3 stages. First we deal with Ω being a
Jordan domain with a polygonal boundary. Next we use this special case together
with a normal families argument to establish the result for arbitrary simply con-
nected domains. The proof will be completed by using the simply connected case
to prove the general result for finitely connected domains. We now fix a base point
z0 ∈ Ω and for convenience we assume that |Ω| = 1.

Step 1: Ω is a polygonal Jordan domain.
Let σ be a “short” segmental crosscut of Ω with �(σ) much less than dist{z0, ∂Ω},
where we denote this distance by δΩ(z0) and much less than |Ωσ|. By the Theorem
of Section 2 it will suffice to construct a function f ∈ H(Ω) ∩ L1(Ω) which satisfies

(4)
∫∫
Ω

|f(z) − f(z0)| dA(z) � |Ωσ|

and

(5)
∫∫
Ω

|f ′(z)| dA(z) = O (� (σ))

The symbol “�” means greater than or equal to modulo an absolute constant. We
also use the notation a ≈ b to denote a � b � a.

By an isometric change of variables, we can write

σ = [−η, η], with η > 0.

Note that by our assumption on σ, dist{σ, z0} is much greater than η.
We let Ωσ(z0) denote the component of Ωσ \ σ which contains z0, and set Γ =

∂Ωσ(z0) \σ. Since Γ is itself a (polygonal) Jordan arc, its complement G = Ĉ \Γ is
simply connected and it follows (from [Rud] Theorem 13.11 along with an inversion)
that there exists a holomorphic square root of the nonvanishing analytic function
z2 − η2. We denote this function by

√
z2 − η2.

Consider the function

(6) f(z) =
z√

z2 − η2
∈ H(G)

Clearly

(7) dist (f (z) , {±1}) < 1
2

for |z| > Mη

where M > 0 is sufficiently large. An economical choice for M could easily be
obtained but we do not require such precision. All that is important for our purposes
is to note that a choice for M can be made which is independent of η.
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¿From the continuity of f on Ω, it follows that a single sign in (7) will persist in
each component of Ωσ \Ball(0,Mη). For definiteness we assume that f(z0) is close
to 1 in the sense of (7) (if not replace

√
z2 − η2 with −

√
z2 − η2).

We let 〈Dj〉kj=1 denote the (finitely many) components of Ωσ \Ball(0,Mη). Note
that each Dj is itself a Jordan domain whose boundary ∂Dj consists of a subset
of ∂ Ball(0,Mη) together with a subset of either Γ or ∂Ωσ \ Γ (but not both!).
We partition the Dj ’s into 2 categories: 〈Ai〉kA

j=1, 〈Bj〉kB
j=1 where each Ai satisfies

∂Ai ∩ Γ 
= ∅ and each Bj satisfies ∂Bj ∩ Γ = ∅. For each j ∈ {1, ..., kB} we
let γj denote a path in C \ Ball(0,Mη) which joins z0 to Bj and which crosses Γ
transversally a finite number, nj, of times.

We next use the fact that Γ is the natural boundary of our function
√
z2 − η2

and furthermore, each time z crosses Γ (at a nonendpoint, i.e., at a point 
= ±η) the
sign of

√
z2 − η2 reverses. Indeed, suppose that this fails for some point w0 ∈ Γ. It

follows from a routine analytic continuation argument that our function
√
z2 − η2

would have an analytic extension to all of C\{±η}, and hence (as these singularities
are removable) to all of C. Thus, z2−η2 is the square of some entire function. This
is impossible since this function has simple zeros.

It follows that each time γj crosses Γ, the sign in (7) changes. Also since an even
number of crossings (nj) would result in landing in an Ai, it follows that nj is odd
for all j, and consequently

(8) |f(z) − f(z0)| ≥ 1 (z ∈ ∪ Bj).

We claim that

(9) | ∪ Bj| � |Ωσ|.
There are two cases depending on which of the two components of Ω \ σ has the
larger area. If z0 ∈ Ωσ then | ∪ Bj | is large, at least 1/4 for small η, and so (9) is
clear. On the other hand, if z0 /∈ Ωσ, then

|Ωσ| ≤ | ∪ Bj| + |Ball(0,Mη)|
and again (9) follows since our assumption is that η is small compared to the area
of Ωσ.

Using (8) and (9) we conclude∫∫
Ω

|f(z) − f(z0)|dA(z) ≥
∫∫
∪ Bj

|f(z) − f(z0)|dA(z)

≥ | ∪ Bj |
� |Ωσ|

which establishes (4).
Differentiating (6) yields

(10) |f ′(z)| =
η2

|z − η| 32 |z + η| 32
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To estimate the integral, we partition the domain Ω into the following 4 subdomains:

Ω1 = {z ∈ Ω : |z − η| < η}
Ω2 = {z ∈ Ω : |z + η| < η}
Ω3 = {z ∈ Ω : |z| < 3η} \ {Ω1 ∪ Ω2}
Ω4 = {z ∈ Ω : |z| ≥ 3η}

For z ∈ Ω1, |z + η| ≈ η so by (10),∫∫
Ω1

|f ′(z)|dA(z) ≈ √
η

∫ 2π

0

∫ η

0

r

r
3
2
dzdθ ≈ η

By the same token we get ∫∫
Ω2

|f ′(z)|dA(z) ≈ η

For z ∈ Ω3, |z ± η| ≈ η so by (10), |f ′(z)| ≈ 1
η and since |Ω3| ≈ η2 it follows that∫∫

Ω3

|f ′(z)|dA(z) ≈ η

Finally, for z ∈ Ω4, we find |z ± η| ≈ |z| so that |f ′(z)| ≈ η2

|z|3 and hence∫∫
Ω4

|f ′(z)|dA(z) � η2

∫ 2π

0

∫ ∞

3η

r

r3
drdθ

≈ η2 1
η

= η

as well, and (5) is established.
Since �(σ) ≈ η, we have shown that

(11)
|Ωσ|
�(σ)

�

∫∫
Ω

|f − f(z0)|dA(z)∫∫
Ω

|f ′(z)|dA(z)
≤ Ka

1 (Ω)

provided that �(σ) is small compared to δΩ(z0) and |Ωσ|. Hence the supremum L
of (3) has been shown to be finite if Ω is an analytic 1-Poincaré domain. Step 1 is
complete.

Step 2: Ω is a simply connected domain.
The approach will be the same as in Step 1: we let σ be a short segmental crosscut
of Ω and wish to construct a function f ∈ H(Ω) ∩ L1(Ω) which satisfies (4) and
(5).

Claim. There exists a sequence 〈Ωn〉∞n=1 of polygonal Jordan domains inside Ω such
that

i. |Ωσ \ Ωn| −→ 0,Ωn ⊂⊂ Ωn+1 and

ii. σn
DEF≡ Ωn ∩ σ is a segmental crosscut of Ωn with �(σn) −→ �(σ).
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The proof of the Claim is a straightforward construction and we omit the details.
For each n we may assume z0 ∈ Ωn, and we let Ωn(z0) denote the component of

Ωn \ σn which contains z0. We write

σn = [an, bn], σ = [a, b],

so that an ↗ a, bn ↘ b and let

(12) fn(z) =
z√

(z − an)(z − bn)

correspond to the pair 〈Ωn, z0〉 in the construction of Step 1. Note that |fn(z0)−1| <
1
2 . Now for each fixed n0, the family 〈fn〉n>n0 is uniformly bounded on Ωn and
is hence a normal family. Thus (by Theorem 15, p. 224 in [Ahl]) there exists
f ∈ H(Ω) such that

fn −→ f

uniformly on compact subsets of Ω. From (12) and since an −→ a, bn −→ b we
conclude

f(z) =
z√

(z − a)(z − b)

and hence the estimate (5) follows exactly as in the proof of Step 1. As for (4) we
first note on Ωn0 , |fn| � |f | for n > n0. Hence, given ε > 0, we can find n0 such
that ∫

Ωσ\Ωn0

|fn(z) − fn(z0)|dA(z) < ε (alln ≥ n0).

Next choose n1 > n0 such that for all n > n1

|f(z) − fn(z)| < ε on Ωn0 .

We may now conclude that

∫
Ω

|f(z) − f(z0)|dA(z)

�
∫

Ωn0\Ball( a+b
2 ,Mη)

|f(z) − f(z0)|dA(z)

≥
∫

Ωn0\Ball( a+b
2 ,Mη)

|fn(z) − fn(z0)|dA(z) − 2ε

≥
∫

Ωn\Ball( a+b
2 ,Mη)

|fn(z) − fn(z0)|dA(z) − 3ε

� |Ωσn
| − 3ε
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Since this holds for all n > n, and ε > 0 we obtain∫
Ω

|f(z) − f(z0)|dA(z) � |Ωσ|,

as desired.

Step 3: Ω is a finitely connected domain.
Write

∂Ω = Γ0 ∪
k⋃

i=1

Γi

where Γ0 is the outer boundary component and each Γi (i ≥ 1) is an inner boundary
component. Pick points zi in Int(Γi) (i ≥ 1) – the interior of Γi and let Γ�

i denote
the image of Γi under the analytic inversion z �→ 1/(z − zi). Put

Ωi = Int(Γ�
i ) (i ≥ 1)

and
Ω0 = Int(Γ0)

Let us show that Ω0 is a 1-Poincaré domain whenever Ω is a 1-Poincaré domain.
Start by constructing a simply connected domain D ⊂ Ω0 with a smooth boundary
lying in Ω, i.e., the holes of Ω are contained in D. Since D has a smooth boundary
it is well known to be a 1-Poincaré domain. By the lemma, we may take averages
over any disk A ⊂ Ω \Ω0 in place of uΩ. Given a smooth test function on Ω0, then
since Ω, D are both 1-Poincaré domains we have that∫

Ω0

|u− uA| ≤
∫
Ω

|u− uA| +
∫
D

|u− uA| �
∫
Ω0

|∇u|

and hence Ω0 is also a 1-Poincaré domain.
Since the above inversion mappings are all bilipschitz homeomorphisms on Ω, it

follows in a similar manner that the (analytic or Sobolev) Poincaré inequality holds
on Ω if and only if it holds on each Ωi(0 ≤ i ≤ k).

Hence, if Ω failed to be a Sobolev 1–Poincaré domain then so would some Ωi

and the construction in Step 2 would furnish analytic functions on Ωi which would
pull back to analytic functions on Ω (by the inversion z �→ 1/(z − zi)) if i ≥ 1, and
by simple restriction if i = 0) which would violate the analytic Poincaré inequality
(1) for any given constant Ka

1 (Ω).

3. The Case p = ∞.

We first consider the reduction of the Main Result to the case of simply connected
domains. The argument in the previous section works equally well for the case
p = ∞ once we establish that any bounded domain with a smooth boundary is a
is an ∞-Poincaré domain. One method for proving this is to apply the following
proposition.
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Proposition. Let Ω be any domain, z0 ∈ Ω and denote the inner distance in Ω by

dΩ(z0, z) = inf{�(γ) : γ curve in Ω from z0 to z}.

If DΩ(z0) = supz∈Ω dΩ(z0, z) <∞ then Ω is an ∞-Poincaré domain and

K∞(Ω) ≤ 2DΩ(z0)

.

Proof. For u ∈ C1(Ω) and z ∈ Ω we have (by Calculus) that

|u(z) − u(z0)| ≤
∫
γ

|∇u| ds ≤ ‖∇u‖L∞(Ω) · |�(γ)|

for any curve γ in Ω which connects z0 to z. Thus,

|u(z) − u(z0)| ≤ DΩ(z0)‖∇u‖L∞(Ω)

which yields the result since

|u(z) − uΩ)| ≤ |u(z) − u(z0)| + 1
|Ω|

∫
Ω

|u− u(z0)| ≤ 2DΩ(z0)‖∇u‖L∞(Ω).

Theorem. Let Ω be a simply connected domain with finite area and z0 ∈ Ω. Then,

Ka
∞(Ω) ≈ K∞(Ω) ≈ DΩ(z0).

In order to prove this theorem we first observe that by the proposition and a
calculation similar to one in §2 we have that

Ka
∞(Ω) � K∞(Ω) � DΩ(z0).

and hence we must prove that DΩ(z0) � Ka
∞(Ω). This requires constructing an

analytic function and this is done in the next section.

4. The Construction of an analytic test function.

Fix a simply connected domain Ω, with nonempty boundary and let γ be a
hyperbolic geodesic in Ω, i.e., γ is the image of a diameter of the unit disk under
a Riemann mapping function. Suppose further that {wn}∞n=−∞ is a sequence of
points on γ satisfying

ρΩ(w0, wn) = n n = ±1,±2, . . . ,

where ρΩ denote the hyperbolic distance in Ω. Recall that δΩ(w) denotes the
Euclidean distance to ∂Ω.
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Lemma. There are apriori constants c1 > 0, c2 > 0, 0 < α < 1 and an analytic
function f on Ω satisfying

(i) If a ∈ γ precedes w−1 and b ∈ γ follows w1, then

�


 ∫

γ(a,b)

f dw


 ≥ c1�(γ(w−1, w1)).

(ii) Let w ∈ Ω and let τ be the hyperbolic geodesic through w which is orthogonal
to γ. If τ intersects γ between wn and wn+1, then

|f(w)| ≤ c2α
|n|.

Proof. Let ϕ : Ω → ∆ be the Riemann mapping function which maps Ω to the unit
disk ∆ and maps γ into the imaginary axis. This mapping is uniquely determined
by requiring that ϕ(w0) = 0 and �ϕ(w1) > 0. Let ψ be the inverse mapping.

Choose |λ|=1 so that iλψ′(0) = |ψ′(0)|. Now it follows from the Koebe distortion
theorem, see [Pom, §1.3], that

� (iλψ′(it)) ≥ 1
2
|ψ′(0)|

for |t| < η, where η > 0 is some apriori constant. Another consequence of the
distortion theorem is that

(1 − t2)3|ψ′(it)| ≤ 16|ψ′(0)| (|t| < 1).

Now fix an integer p ≥ 3, which will be chosen later, and define the analytic
function on Ω by

f(w) = λ

(
1 + ϕ(w)2

2

)p

(w ∈ Ω).

To prove (i) let ϕ(a) = tai and ϕ(b) = tbi. By conformal invariance of the hyperbolic
metric we know that there is an apriori positive constant, we may as well assume
is η, such that |ta| > η and |tb| > η. Combining these estimates with the ones from
the distortion theorem yield that

2p�
∫

γ(a,b)

f dw = �
∫ tb

ta

λ
(
1 + ϕ(ψ(it))2

)p
iψ′(it) dt

=
∫ tb

ta

(1 − t2)p� (iλψ′(it)) dt

=
[∫ η

0

(1 − t2)p dt− 32
∫ 1

η

(1 − t2)p−3 dt

]
|ψ′(0)|.

For p sufficiently large (depending on η) the quantity in brackets is positive. Fix
such a p and set c1 equal to this quantiy divided by 2p. One more application of
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the distortion theorems yields that |ψ′(0)| is comparable to �(γ(w0, w1)). Thus, (i)
follows.

To prove (ii), fix w ∈ Ω and let τ be the geodesic in the hypothesis of (ii). For
concreteness, assume that τ intersects γ at the point w′ and that ρΩ(w0, wn) ≤
ρΩ(w0, w

′) < ρΩ(w0, wn+1). Notice that this implies that �ϕ(w′) > 0. Since ϕ(τ)
is a geodesic in ∆ which is orthogonal to the imaginary axis it is elementary that
|i− ϕ(w)| ≈ |i− ϕ(w′)| and hence

|f(w)| =
∣∣∣∣1 + ϕ(w)2

2

∣∣∣∣
p

≤ |i− ϕ(w)|p

� |i− ϕ(wn)|p �
(

1 − |ϕ(wn)|
1 + |ϕ(wn)|

)p

= exp(−pρ∆(0, ϕ(wn))) = exp(−pρΩ(w0, wn)) = e−np.

Hence c2, α can be chosen (depending only on p) so (ii) holds. This completes the
proof.

Theorem. DΩ(w0) � Ka
∞(Ω).

Proof. Suppose that 0 < D < DΩ(w0). Then, there must be a hyperbolic geodesic
γ with �(γ) > D. Fix such a γ and let {wn}∞n=−∞ be a sequence of points on
γ satisfying the conditions in the lemma. Removing w0 from γ we split γ into
two parts γ+ and γ− based on the indices for the wn’s. We will assume that
�(γ+) ≥ D/2.

For each integer n let fn be the analytic function on Ω constructed in the lemma
with the point wn playing the role of w0 in the lemma. Next, let

gn(w) =
n∑

j=1

∫ w

w0

fj dw (w ∈ Ω, n = 1, 2, . . . )

then since Ω is simply connected the {gn} are all analytic on Ω.
By part (ii) of the lemma we have ‖g′n‖∞ < 2c2/(1 − α) = c3 for all n. On the

otherhand, part (i) yields that

�gn(wn+1) =
n∑

j=1

�
∫

γ(w0,wn+1)

fj dw

≥
n∑

j=1

c1�(γ(wj−1, wj)) ≥ c1�(γ(w0, wn+1)).

The analytic Poincaré inequality now implies that

|gn(wn+1| = |gn(wn+1) − g(w0)| ≤ Ka
∞(w0)‖g′n‖∞

and combining this with the above inequality gives

D ≤ 2�(γ+) = 2 lim
n→∞ �(γ(w0, wn)) ≤ 2c3

c1
Ka

∞(w0)

which proves the theorem.
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