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Abstract� A complete geometric characterization for a general Steiner symmetric
domain Ω ⊂ R

n to satisfy the Poincaré inequality with exponent p > n−1 is obtained

and it is shown that this range of exponents is best possible. In the case where
the Steiner symmetric domain is determined by revolving the graph of a Lipschitz

continuous function, it is shown that the preceding characterization works for all

p > 1 and furthermore for such domains a geometric characterization for a more
general Sobolev–Poincaré inequality to hold is given. Although the operation of

Steiner symmetrization need not always preserve a Poincaré inequality, a general

class of domains is given for which Poincaré inequalities are preserved under this
operation.

SECTION 1: INTRODUCTION

Let Ω be a domain in R
n (n ≥ 2) with finite volume: mn(Ω) < ∞. Given an

integrable function u on Ω, we let uΩ denote its average value on Ω, i.e.,

uΩ =
∫

Ω

u(x) dx.

For each number p, 1 ≤ p <∞, the domain Ω is said to be a p–Poincaré domain
provided that

Mp(Ω) := sup
u

‖u− uΩ‖Lp(Ω)

‖∇u‖Lp(Ω)
<∞,

where the supremum is taken over all nonconstant functions u in the Sobolev space
W 1,p(Ω). Thus p–Poincaré domains support the p–Poincaré inequality:∫

Ω

|u− uΩ|p dx ≤M

∫
Ω

|∇u|p dx.

By the density of smooth functions in W 1,p(Ω) ([19], [8]), the Poincaré inequal-
ity need only be checked for locally Lipschitz continuous functions. The Poincaré
inequalities are prototypical examples of Sobolev inequalities which are extensively
used in PDE and related fields, see [18], [1], [26], and Chapter 7 of [11]. The
geometry of Poincaré domains is quite complicated and a complete geometric char-
acterization remains an elusive unsolved problem, even for the case of a simply
connected planar domain (see, however, [13]). Notice that there is not much hope
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for a general geometric characterization since for example the removal of a closed
set of vanishing (n-1)-dimensional measure from a p–Poincaré domain results in a
new p–Poincaré domain. We will mostly be dealing with the p–Poincaré inequalities
when p > 1. The “isoperimetric” case p = 1 is more tractable, see [12], [18] and
[25]. For information on Poincaré type inequalities in case p < 1, see [5]. We point
out that iteration arguments can be used to show that certain local inequalities im-
ply a corresponding global inequality in smooth domains and even in domains that
satisfy a twisted interior cone condition (John domains)–see [3], [6], and [14]. For
sufficiently “nice” domains (smooth or uniform, for example) a Poincaré inequality
can also be shown by extending the functions to all of R

n, see [7], [13] and the
references therein.

In this paper we will give a geometric characterization of p–Poincaré domains
where we restrict to the class of Steiner symmetric domains Ω ⊂ R

n. Our charac-
terization will work only when p > n−1, and will depend on the Euclidean distance
function:

δΩ(−⇀x ) = dist[−⇀x , ∂ Ω].

In order to formulate our results, it will be convenient to split the coordinates of
a point −⇀x = (x1, x2, · · · , xn) as (x1, x

′) where x′ = (x2, x3, · · · , xn) ∈ R
n−1. For

each t ∈ R and any set A ⊂ R
n we define the cross section of A at level t as

At = {x ∈ A : x1 = t}
and the projection of A onto the x1-axis as

Projx1
(A) = {x ∈ R : Ax �= ∅}.

The Steiner symmetrization (with respect to the x1-axis) of the domain Ω is the
domain

Ω� =
{

(x, x′) ∈ R × R
n−1 : |x′|n−1 <

1
ωn−1

mn−1(Ωx)
}
,

where ωn denotes the volume of the unit ball in R
n: ωn = mn(Balln(1)). The

domain Ω is said to be a Steiner symmetric domain (with respect to the x1-axis) if
Ω = Ω�. We will also make use of the so-called kp metric on Ω which is defined as
follows:

kΩ
p (−⇀x ,−⇀y ) = inf

γ

∫
γ

ds

δ
(n−1)/(p−1)
Ω

(−⇀x ,−⇀y ∈ Ω),

where the infimum is taken over all rectifiable curves γ joining −⇀x to −⇀y inside Ω
and the integration is with respect to arclength. The kp metrics have been used
by Gehring and Martio [10] and by Smith and Stegenga [23]. Observe that when
Ω = Ω� is a Steiner symmetric domain then the x1-axis is a geodesic for kΩ

p so that
for t1, t2 ∈ Projx1

(Ω) we have

kΩ
p ((t1, 0′), (t2, 0′)) =

∫ t2

t1

dt

δΩ(t, 0′)(n−1)/(p−1)
.

Also, whenever 0 ∈ Projx1
(Ω) then for each x ∈ Projx1

(Ω) we can define T (Ωx)
(here T stands for “tail”) as a component of Ω \Ωx which does not contain (0, 0′).
Except when x = 0 there is only one such component. We are now ready to state
the first of our three main results.

2



Theorem A. (Geometric characterization of Steiner symmetric Poincaré domains)
Let Ω ⊆ R

n be a Steiner symmetric domain of finite volume. We assume

Ω =
{
(x1, x

′) ∈ R × R
n−1 : |x′| < ϕ(x1)

}
= Ω∗

with |ϕ| ≤ M < ∞. We may assume ϕ(0) > 0. Let n − 1 < p < ∞. Then Ω is a
p–Poincaré domain if and only if

(1) sup
x∈Projx1

Ω
kΩ

p ((0, 0′), (x, 0′))p−1
mn (T (Ωx)) <∞.

Furthermore, if p = n − 1 and Ω is a p–Poincaré domain then (1) remains valid.
Finally, for each p ∈ (1, n − 1] there is a Steiner symmetric domain Ω ⊂ R

n of
finite volume which is not a p–Poincaré domain but for which (1) is valid.

The operation of Steiner symmetrization is a natural one for many problems in
PDE. For connections of the Steiner symmetrization as well as of types of sym-
metrizations with such problems, three good references are [2], [16] and (the clas-
sical) [21]. Each of these contains an extensive bibliography. In particular, when
p = 2, the p–Poincaré constant M2(Ω) is the reciprocal of the square root of the
smallest positive eigenvalue for the Laplace operator with Neumann boundary con-
ditions on Ω–see [8], [17], §4.10 of [18] and §4 of [24] for more on this connection.
In 1948, Pólya proved [20] that the smallest positive eigenvalue for Laplace’s op-
erator with Dirichlet boundary conditions on Ω will never decrease under Steiner
symmetrization. The corresponding result is no longer true if Neumann boundary
conditions are to replace those of Dirichlet. In fact there exists a domain Ω ⊂ R

2

which is a p–Poincaré domain for all p but whose Steiner symmetrization Ω� fails
to be a p–Poincaré domain for any p (see Example 6.10 in [22]). Our next result is
a direct extension from two to any number of dimensions of one of the main results
in a recent paper by Smith, Stegenga, and the second author (see Theorem C of
[22]). It gives a class of domains for which the Poincaré inequalities are preserved
under the operation of Steiner symmetrization.

Theorem B. (Steiner symmetrization preserves Poincaré inequalities). Let Ω ⊆
R

n be a domain satisfying

Ωx = {x} × Balln−1

(−−⇀
γ(x), ϕ(x)

)
(x ∈ R)

where −⇀γ : R −→ R
n−1 and ϕ : R −→ [0,M ] (M < ∞). If Ω is a p–Poincaré

domain with n− 1 < p <∞ then so is its Steiner symmetrization Ω∗.

Finally, we give a more restricted class of Steiner symmetric domains for which
the characterization of Theorem A remains valid for all p > 1. These domains
Ω will be obtained by revolving the graph of a Lipschitz continuous function Φ :
R −→ [0,∞) about the x1-axis. In fact, for such domains, we obtain the following
geometric characterization of a more general Sobolev-Poincaré inequality.

Theorem C. Assume that Φ : R −→ [0,∞) is Lipschitz continuous and

Ω =
{
(x1, x

′) ∈ R × R
n−1 : |x′| < Φ(x1)

}
= Ω∗
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is a domain of finite volume. We may assume Φ(0) > 0. Let p and q be positive
numbers satisfying 1 < p ≤ q. If p < n we assume also that q ≤ np

n−p
. The following

are equivalent:
(i) There exists a positive number C such that the inequality

‖u− uΩ‖Lq(Ω) ≤ C‖∇u‖Lp(Ω)

holds for all Sobolev functions u ∈W 1,p(Ω).
(ii)

sup
x∈Projx1(Ω)

(∫ max{0,x}

min{0,x}
|Φ(s)|(1−n)/(p−1) ds

)p−1

mn(T (Ωx))
p
q <∞

Note that since Φ is Lipschitz, Φ(s) and δΩ(s, 0′) are always comparable, so the
quantity in the above supremum is comparable to the corresponding quantity in
Theorem A.

This paper is organized as follows. In Section 2 we formulate some preliminary
lemmas which will be needed in the proofs of the principal results. Section 3 gives
the proofs of Theorems A and B. In the final Section 4 we prove Theorem C and
also construct a simple example to show that Theorem A cannot in general remain
valid if the p–Poincaré inequality is replaced by the more general one considered in
Theorem C (with q > p).

We invoke the customary conventions regarding constants. The same symbol
for a constant may take on different values at different occurences. If we wish to
stress that a constant C depends only on certain parameters, say p and n, we write
C = C(n, p). The notation C � D shall usually indicate that C is dominated by an
absolute constant A times C (C ≤ AD), although in some proofs for convenience
we may allow A to depend on certain parameters if it is well understood that D
may depend on these parameters as well. The notation C ≈ D is equivalent to
C � D and D � C. For example, if |t| < π/2 then sin t ≈ t.

SECTION 2: LEMMAS

Here we gather an assortment of results needed to prove the main theorems. We
begin with the following Sobolev-type embedding theorem which is a consequence
of inequalities (7.34) and (7.41) in [11]. See also Lemma 1.7 of [4].

Lemma 2.1. If B ⊆ R
n is a ball of radius R, p > n, and u ∈ W 1,p(B), then

|u(x1) − u(x2)| ≤ C(n, p)|x1 − x2|1−
n
p

(∫
B

|∇u|pdx
) 1

p

,

for all x1 and x2 in B.

Our next two results provide additional formulations of the p–Poincaré inequality.
In formulating the first result it will be convenient to introduce the following class
of functions.

Notation. For a domain Ω ⊆ R
n, we let Liploc(Ω) denote the class of functions

on Ω which are locally Lipschitz continuous on Ω.
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Lemma 2.2. Let Ω ⊆ R
n be a domain of finite volume, B0 = Balln(x0, r0) ⊂ Ω

with r0 ≤ 1
2
δΩ(x0). Letting

Mp
p,Ω(B0) = sup

u

{ ∫
Ω
|u|pdx∫

Ω
|∇u|pdx : u ∈ (Liploc ∩W 1,p)(Ω) \ {0} and u = 0 on B0

}
Np

p,Ω(B0) = sup
u

{
mn(u = 1)∫
Ω
|∇u|pdx : u ∈ (Liploc ∩W 1,p)(Ω) \ {0}, 0 ≤ u ≤ 1, u = 0 on B0

}
we have Mp

p (Ω) ≤ c(n, p)Mp
p,Ω(B0) andMp

p,Ω(B0) ≤ c(p)Np
p,Ω(B0) �

( mn(Ω)
mn(B0)

)
Mp

p (Ω).

The proof is accomplished by a series of “truncation” arguments of the type often
used in PDE. A good general reference for such material is the treatise by Maz’ja
[18], where the results combined in Lemma 2.2 can be found. For the convenience
of the reader we briefly sketch the ideas involved in the proof.

The first inequality of the Lemma follows by decomposing v = u − u(3/2)B0 as
v = ψv + (1 − ψv) where ψ is an appropriate cut-off function and then applying
the Sobolev and Poincaré inequalities for ψv and finally using Lemma 2.3 below.

For the second inequality, let u ∈ Liploc(Ω) ∩W 1,p(Ω) \ {0} with u = 0 in B0.
We must show that RM (u) :=

∫
Ω
|u|p dx/ ∫

Ω
|∇u|p dx � Np,Ω(B0).

For j ∈ Z, define

Aj =
{
x ∈ Ω : 2j−1 ≤ |u(x)| < 2j

}
.

We may write

(2)
∫

Ω

|u|p dx ≈
∑
j∈Z

2jpmn(Aj) .

Define for j ∈ Z

vj(x) = max
{

0,min
{
1,

|u(x)| − 2j−1

2j−1

}}
.

Differentiating, yields

(3) |∇vj(x)| =
{ |∇u(x)|2−j+1 if x ∈ Aj

0 if x �∈ Aj

Note that for each j, vj ∈ (Liploc ∩W 1,p)(Ω) \ {0}, 0 ≤ vj ≤ 1 and vj = 0
on B0. Whence mn({vj = 1}) ≤ Np

p,Ω(B0)
∫
Ω

|∇vj |p dx. Using this inequality

and then (3) we obtain mn(Aj) ≤ mn({vj−1 = 1}) ≤ Np
p,Ω(B0)

∫
Ω

|∇vj−1|pdx ≤
Np

p,Ω(B0)2(−j+2)p
∫

Aj

|∇u|pdx .

Summing up by using (2) gives∫
Ω

|u|pdx ≤ c(p)Np
p,Ω(B0)

∫
Ω

|∇u|p dx

as desired.
The last inequality follows from Lemma 2.3 below.
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Lemma 2.3. Let Ω ⊆ R
n be a p–Poincaré domain, 1 ≤ p <∞ and A ⊂ Ω be any

measurable subset of positive volume. For u ∈W 1,p(Ω), we have∫
Ω

|u− uA|pdx ≤ c(p)
mn(Ω)
mn(A)

Kp
p (Ω)

∫
Ω

|∇u|pdx .

The proof of Lemma 2.3 is accomplished by adding and subtracting uΩ from
u−uA and then using the triangle inequality and Hölder’s inequality. We omit the
details.

In order to deal effectively with Steiner symmetric domains Ω = Ω∗, we will
need to “discretize” the function δΩ(x, 0′) (x ∈ R, 0′ ∈ R

n−1) along the central
axis. The following result, whose proof relies on a Whitney type decomposition
argument, will accomplish this for us.

Lemma 2.4. Let Ω = Ω∗ ⊆ R
n be a Steiner symmetric domain. Write (aΩ, bΩ) =

Projx1
Ω. There exists a sequence 〈ai〉i∈I with I ⊆ Z an interval, such that

aΩ ≤ ai < ai+1 ≤ bΩ

for each i ∈ I ∩ (I − 1), and for each x ∈ (aΩ, bΩ), we have

min
i∈I

dist [(x, 0′), [∂Ω]ai
] ≤ 2δΩ(x, 0′) .

Furthermore, if ai−1 ≤ x ≤ ai we have

min
j∈{i−1,i}

dist
[
(x, 0′), [∂Ω]aj

] ≤ 2δΩ(x, 0′)

provided i �∈ {0, 1}.
Finally, for any given x0 ∈ Projx1

Ω, the construction can be made in such a
way that δΩ(x0, 0′) = dist[(x0, 0′), [∂Ω]a0].

Proof. Fix x0 ∈ (aΩ, bΩ). For brevity we write δΩ(x) for δΩ(x, 0′).
Choose a0 ∈ [aΩ, bΩ] satisfying

dist[(x0, 0′), [∂Ω]a0] = δΩ(x0) =: δ0 .

Observe that if 0 < ∆x < δΩ(x), the triangle inequality implies dist[(x0 +
∆x, 0′), [∂Ω]a0] ≤ δ0 + ∆x and δΩ(x0 + ∆x) ≥ δ0 − ∆x whence

dist
[
(x0 + ∆x, 0′), [∂Ω]a0

]
δΩ(x0 + ∆x)

≤ δ0 + ∆x
δ0 − ∆x

so if ∆x ≤ ( 1
3
)δΩ(x0) it follows that

(4) dist
[
(x0 + ∆x, 0′), [∂Ω]a0

] ≤ 2δΩ(x0 + ∆x) .

Let ∆0 = inf{∆x : (4) is false} and put x1 = x0 +∆0. Note by the above comment,
∆0 ≥ 1

3δΩ(x0). If x1 = bΩ we need not construct any more ai’s (i > 0). Otherwise,
we choose a1 ∈ [aΩ, bΩ] satisfying

dist
[
(x1, 0′), [∂Ω]a1

]
= δΩ(x1) =: δ1 .

The following claim shows that we must have a1 > a0.
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Sublemma. If aj < ai and (x, 0′) is closer to [∂ Ω]aj
than to [∂ Ω]ai

then so is
(t, 0′) for all t < x.

(The proof of the sublemma is an exercise in elementary plane geometry, we omit
the details.) Indeed, if it were to happen that a1 < a0 then by the sublemma and
the properties of a0 and a1, we would have

dist
[
(x0, 0′), [∂Ω]a1

]
< dist

[
(x1, 0′), [∂Ω]a0

]
= δΩ(x0)

which is impossible, so indeed a1 > a0.
We put

∆1 = inf
{
∆x : dist

[
(x1 + ∆x, 0′), [∂Ω]a1

]
> 2δΩ(x1 + ∆x)

}
and x2 = x1 + ∆1. If x2 = bΩ stop this construction, otherwise we proceed as
before to seek to obtain a2 > a1 having the same relationship to x2 as a1 did
to x1. We continue this construction iteratively (and perhaps indefinitely) in the
same fashion to construct a desired sequence 〈ai〉i≥0. The fact that at each step,
∆k > 1

3δΩ(xk) guarantees that xk ↗ bΩ. We can similarly construct a sequence
〈ai〉i<0. By combining these two sequences, we obtain a sequence 〈ai〉i∈I , which by
virtue of the construction, clearly satisfies all of the desired properties except for
the last inequality.

We now establish the last inequality of Lemma 2.4. By symmetry we may assume
that i > 1. Fix x̃ ∈ [ai−1, ai], and choose k ∈ I such that

min
j∈I

dist
[
(x̃, 0′), [∂Ω]aj

]
is attained when j = k. We must show that k ∈ {i− 1, i}, and we shall accomplish
this by method of contradiction.

Case 1. ak < ai−1.
Regardless of where xk is located, be it xk ≤ ak or xk > ak, it follows from the

construction of the sequences 〈aj〉j∈I and 〈xj〉j∈I and simple plane geometry that
xk+1 > x̃.

We now have

(5) ak < ak+1 ≤ ai−1 ≤ x̃ < xk+1.

Since (by choice of k) no points (aj , ϕ(aj)) can lie inside the (two dimensional)
semi-circle with center (x, y) = (x̃, 0) and radius dist [(x̃, 0′), [∂Ω]ak

], we must have

(6) ϕ(ak+1)2 ≥ (x̃− ak)2 + ϕ(ak)2 − (x̃− ak+1)2.

Also by virtue of the construction, we can write

(7) dist [(xk+1, 0′), (ak, ϕ(ak))]2 = 4 dist [(xk+1, 0′), (ak+1, ϕ(ak+1))]
2
.

If we estimate the right side of (7), using (6), then use the inequality: (x̃− ak)2 ≥
(x̃− ak+1)2 + (ak+1 − ak)2, and finally the triangle inequality we obtain a contra-
dictory inequality. This shows that Case 1 cannot occur.

Case 2. ak > ai.
The treatment here is similar to that in Case 1. We omit the details. �
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Lemma 2.5. Let R be the cylinder defined by

R =
{
(x1, x

′) ∈ R × R
n−1 : |x1| < M and |x′| < M

}
.

If p ≥ n− 1 then

sup
0<b<M

kR
p

(
(0, 0′), (b, 0′)

)p−1
mn

(
R ∩ {x1 > b}) ≤ C(M, p, n).

Moreover if p < n− 1 then this supremum is infinite

Remark. The last statement of the Lemma shows that a principal result [Theorem
A] in [SmStSt–P] used to prove another main result [Theorem C] therein which
is the two dimensional analogue of our Theorem B here, cannot be generalized to
n > 2 dimensions without assuming (at least) p ≥ n− 1.

Proof. Define Φ(b) := kR
p

(
(0, 0′), (b, 0′)

)p−1
mn

(
R ∩ {x1 > b}). We have Φ(b) =

c(n)
( ∫M

M−b
ds

s(n−1)/(p−1)

)p−1(M − b)Mn−1. Now∫ M

M−b

ds

s(n−1)/(p−1)
= C(n, p)

{ ∣∣M1−n−1
p−1 − (M − b)1−

n−1
p−1
∣∣, if n �= p

log 1
1−b/M , if n = p .

Case 1. n = p.

Φ(b) ≤ C(M, p, n)
(

1 − b

M

)[
log

1
1 − b/M

]n−1

≤ C(M, p, n) max
0<t≤M

t

[
log

1
t

]n−1

= C(M, p, n)

Case 2. n �= p.
Let γ = (p − 1)

(
1 − n−1

p−1

)
+ 1 = p + 1 − n. We have Φ(b) ≤ C(M, p, n) +

C(M, p, n)(M − b)γ ≤ C(M, p, n) for all b ∈ (0,M) if and only if γ ≥ 0, i.e.,
p ≥ n− 1. �

SECTION 3: PROOFS OF MAIN RESULTS

In this section we shall prove Theorems A and B.

Strategy of Proofs. We first show sufficiency of the supremum (1) being finite for
the p–Poincaré inequality to hold on Ω∗. Next we show that for any domain Ω
satisfying the conditions of Theorem B (in particular, if Ω = Ω∗ is as in Theorem
A), the supremum in (1) (for Ω∗) being infinite will cause the p–Poincaré inequality
on Ω to fail (n− 1 < p <∞). This will establish the necessity part of Theorem A,
and also (in light of the previously established sufficiency for Theorem A) at the
same time prove Theorem B. We finish the proofs by giving counterexamples which
demonstrate that the range of exponents coverered in Theorem A is sharp.

PART A: Condition (1) implies Ω∗ is a p–Poincaré domain. (n− 1 < p <∞).
By Lemma 2.2 we need only check that if u ∈ (Liploc ∩W 1,p)(Ω), satisfies 0 ≤

u ≤ 1 and u � B0 = 0 where B0 = Balln
(−⇀

0 , 1
2δΩ

(−⇀
0
))

then mn

({u = 1}) ≤
N
∫
Ω
|∇u|pdx for some finite positive constant N .
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For convenience we introduce some more notation. We write Ω for Ω∗ in the
remainder of this proof. For s ≥ 0, Ω+

s =
{
(x, x′) ∈ Ω : x > s

}
, for s ≤ 0,

Ω−
s =

{
(x, x′) ∈ Ω : x < s

}
. We write A = {u = 1}, and define

A1 = A ∩
⋃

t∈T1

Ωt where T1 =
{
t : u(t, x′) ≤ 1

2
for some x′

}

A2 = A ∩
⋃

t∈T2

Ωt where T2 =
{
t : u(t, x′) >

1
2

for all x′
}
.

Now, let t ∈ T1 and assume that Ωt ∩ A �= ∅. Therefore oscΩt u ≥ 1
2 so we can

apply Lemma 2.1 to the restriction u �Ωt
for a.e. such t to conclude

1
2
≤ C(M, p) diam(Ωt)1−

n−1
p

(∫
Ωt

|∇u|pdHn−1

) 1
p

.

Whence for such t we have ∫
Ωt

|∇u|pdHn−1 ≥ C(M, p)

and we conclude

mn(A1) �
∫
{t∈T1:A∩Ωt �=∅}

ϕ(t)n−1dt ≤
∫
{t∈T1:A∩Ωt �=∅}

Mn−1dt

≤ C(M, p)
∫
{t∈T1:A∩Ωt �=∅}

∫
Ωt

|∇u|pdHn−1dt

≤ C(M, p)
∫

Ω

|∇u|pdx .

We have left to obtain a similar bound for mn(A2). We put

s+0 = inf{s : 0 < s ∈ T2 or s = ∞}
s−0 = sup{s : 0 > s ∈ T2 or s = −∞} .

Certainly we have (letting Ω+
∞ = Ω−

−∞ = ∅)

mn(A2) ≤ mn(Ω+

s+
0
) +mn(Ω−

s−
0
) .

We will prove that mn(Ω+

s+
0
) ≤ N

∫
Ω
|∇u|pdx. The corresponding inequality for

mn(Ω−
s−
0
) is proved in the same fashion. Let t ≥ s+0 , t ∈ T2. We must show that

(8) mn

(
Ω+

t ) ≤ N

∫
Ω

|∇u|pdx .

Case 1. Ωt ∩ 3
2B0 �= ∅.
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Let x′ ∈ Balln−1
(
0′, 1

2δΩ(0)
)
. Then for a.e. such x′,

1
2
≤
∫ t

0

∣∣∣∣ ∂∂x1
u(s, x′)

∣∣∣∣ ds
≤
(∫ t

0

∣∣∇u(s, x′)∣∣pds) 1
p

t
p−1

p .

Thus ∫ t

0

|∇u(s, x′)|pds ≥ C(p)δΩ(0)1−p

so that

∫
Ω

|∇u|pdx ≥
∫

Balln−1(0′, 1
2 δΩ(0))

∫ t

0

∣∣∇u(s, x′)∣∣pds dHn−1(x′)

≥ C(n, p)δΩ(0)n−p

and thus

mn(Ω+
t ) ≤ mn(Ω) ≤ C(n, p)

mn(Ω)
mn(B0)

δΩ(0)p

∫
Ω

|∇u|pdx

≤ C(n, p,M)
mn(Ω)
mn(B0)

∫
Ω

|∇u|pdx .

Case 2. Ωt ∩ 3
2
B0 = ∅.

It certainly would suffice to prove (8) with u being replaced by

ũ(x) = ũ(x1, x
′) =

{
u(x) if x1 ≤ t

max{ 1
2 , u(x)} if x1 > t .

Because of this we may assume that u ≥ 1
2 throughout Ω+

t . Let Q0 be a largest
possible cube of sidelength 	(Q0) ∈ S := {2−n : n ∈ Z} which is centered on the
x1–axis and lies in B0. Adjacent to the right face of Q0 we construct another cube
Q1 which is also centered on the x1–axis and whose side length 	(Q1) ∈ S is as large
as possible so that 2Q1 ⊂ Ω. Next construct a cube Q2 adjacent to the right face
of Q1 in the same fashion as Q1 was constructed from Q0. Continue in this way to
construct a chain of cubes 〈Qi〉Ni=0 where 	(Qi) ≈ δΩ(x) for all x ∈ Qi such that
QN ⊂ Ω+

t but QN−1 �⊂ Ω+
t . Now for each i < N , since 	(Qi) ≈ 	(Qi+1), Qi ∪Qi+1

is a dilation of one of a finite collection of p–Poincaré domains consisting of a unit
cube with a smaller cube attached to and centered on one face (any domain G with
boundary ∂G of class C is a p–Poincaré domain for each p ∈ [1,∞) – see for example
[9] Theorem V.4.19). Therefore Mp(Qi ∪ Qi+1) ≈ 	(Qi) and by invoking Lemma

10



2.3 we obtain
(9)

1
2
≤ |uQ0 − uQN

| ≤
N−1∑

0

|uQi
− uQi+1 |

≤
N−1∑

0

1
mn(Qi)

∫
Qi

|u− uQi+1 | dx

≤
N−1∑

0

1
mn(Qi)

∫
Qi∪Qi+1

|u− uQi+1 | dx

≤ C(n, p)
N−1∑

0

1
mn(Qi)

mn(Qi ∪Qi+1)
mn(Qi)

	(Qi)
∫

Qi∪Qi+1

|∇u| dx

= C(n, p)
∫

NS
0

Qi

|∇u|
δΩ(x)n−1

dx

≤ C(n, p)
(∫

Ω

|∇u|pdx
) 1

p

(∫
∪Qi

dx

δΩ(x)
n−1
p−1 p

) p−1
p

.

Now

∫
∪Qi

dx

δΩ(x)
n−1
p−1 p

= C(n, p)

t∫
0

ds

δΩ(s, 0′)
[

n−1
p−1 p−(n−1)

] = C(n, p)

t∫
0

ds

δΩ(s, 0′)
n−1
p−1

.

Letting L <∞ denote the supremum in (1), we obtain from (9) that

mn(Ω+
t ) ≤ LkΩ

p

(
(0, 0′), (t, 0′)

)1−p

= L

(∫ t

0

ds

δΩ(s, 0′)
n−1
p−1

)1−p

≤ LC(n, p)
∫

Ω

|∇u|pdx .

This establishes (8) and completes the sufficiency proof of Part A. We point out
that this type of “chaining argument” which we used in Case 2 is by now standard,
c.f., [14], [15], [23]. �

Remark. The proof shows that

Np
p,Ω(B0) ≤ C(n, p,M)

mn(Ω)
mn(B0)

+ LC(n, p)

so by Lemma 2.2,

Mp
p (Ω) ≤ C(n,M, p)

mn(Ω)
mn(B0)

+ LC(n, p)

11



where L denotes the supremum in (1).

PART B: If the supremum in (1) is infinite (for Ω∗) then Ω is not a p–Poincaré
domain (n− 1 < p <∞).

Without loss of generality, we may assume that the supremum in (1) is assumed
for x > 0, i.e., that

(10) sup
b>0

kΩ∗
p

(
(0, 0′), (b, 0′)

)p−1
mn(Ω+

b ) = ∞ .

We invoke Lemma 2.4 to obtain a sequence 〈ai〉i∈I with the properties listed
therein, and with x0 = 0. In particular

dist [(0, 0′), [∂Ω∗]a0 ] = δΩ∗(0, 0′) .

For i ∈ I, i > 0, define the set

Ai =
{
x = (x1, x

′) ∈ R × R
n−1 : x1 ∈ (ai−1, ai) or x1 = aj and x′ ∈ Ωx1

with j = i− 1 or i
}
.

We also write κ(x1, x2) for kΩ∗
p

(
(x1, 0′), (x2, 0′)

)
.

Lemma. For each i ∈ I, i > 1 there exists a Lipschitz continuous function fi :
Ai −→ R having the following properties:

(i) fi(ai−1, x
′) = 0 for all (ai−1, x

′) ∈ Ωai−1,
(ii) fi(ai, x

′) = ci for all (ai, x
′) ∈ Ωai

where C1(n, p) ≤ Ci

κ(ai−1,ai)
≤ C2(n, p),

and
(iii)

∫
Ai

∣∣∇fi

∣∣pdx ≤ C(n, p)κ(ai−1, ai)

Proof of Lemma. Let ∆ai = ai − ai−1.

Case 1. ∆ai ≤ 5 min{ϕ(ai−1), ϕ(ai)}.
We perform the construction of fi in case ϕ(ai−1) ≤ ϕ(ai). The construction

in case ϕ(ai−1) > ϕ(ai) can simply be obtained by the present construction by a
reflection. In this case, by Lemma 2.4 we have

δΩ∗(x, 0′) ≈ ϕ(ai−1) for ai−1 ≤ x ≤ ai

so that

(11) κ(ai−1, ai) =
∫ ai

ai−1

ds

δ
n−1
p−1
Ω∗

≈ ∆ai ϕ(ai−1)
− (n−1)

(p−1) .

The definition of fi will be symmetric about the axis x1,i which is parallel to
the xi axis and passes through the center of Ωai−1 meaning that on each 2–plane
containing the x1,i–axis, the definition of fi will be the same. Fixing such a 2–plane
we may now think of fi as a function of two variables x1,i and y : fi(x1,i, y). We

12



need an auxiliary linear function λ : R −→ R which is specified by λ′(t) = −1 and
λ(ai) = 0.

ai-1 a i x   -axis1,i

y-axis

Ri

Oi

Gi

ϕ ( )ai-1

ϕ ( )ai-1 + ∆ a i

Figure 1. Defining the function fi.

Referring to the regions defined in Figure 2, we define fi as follows:

F (x1,i) := fi(x1,i, 0) = (x1,i − ai−1)ϕ(ai−1)−(n−1)/(p−1)

on Gi : fi(x1,i, y) = F (x1,i)

on Oi : fi(x1,i, y) = F (x1,i)
[
1 − y − ϕ(ai−1)

λ(x1,i)

]
+ F (ai)

[
y − ϕ(ai−1)
λ(x1,i)

]
on Ri : fi(x1,i, y) = F (ai) ,

and for y < 0 : fi(x1,i, y) = fi(x1,i, |y|) .
Only property (iii) needs checking. To facilitate the computation we drop the
subscript i from fi, x1,i and further let G, O and R denote the partition of Ai

obtained by revolving Gi, Oi and Ri respectively about the x1,i–axis.
On G,

∣∣∇f(x1, x
′)
∣∣ = F ′(xi) = ϕ(ai)−(n−1)/(p−1) so that (using (11))∫

G

∣∣∇f ∣∣pdx ≈ ϕ(ai)n−1−p
(

n−1
p−1

)
∆ai

= ∆ai ϕ(ai−1)−
(

n−1
p−1

)
≈ κ(ai−1, ai) .

On O, letting r = |x′| we have,

(12)
fx1(x1, x

′) = F ′(x1)
[
1 − |x′| − ϕ(x1)

λ(x1)

]
+
F (x1) − F (ai)

λ(x1)2
[|x′| − ϕ(ai−1)

]
fr(x1, x

′) =
[
F (ai) − F (x1)

] 1
λ(x1)

.

13



Hence∫
O

|fr|p ≈
∫ ai

ai−1

∣∣∣∣F (ai) − F (x1)
λ(x1)

∣∣∣∣p [(λ(xi) + ϕ(ai)
)n−1 − ϕ(ai)n−1

]
dx1 .

But since F ′(t) ≈ ϕ(ai−1)−(n−1)/p−1 (ai−1 ≤ t ≤ ai) and since

(λ(xi) + ϕ(ai))n−1 − ϕ(ai)n−1 ≤ (n− 1)(∆ai + ϕ(ai−1))n−2∆ai

� ϕ(ai−1)n−1

we may conclude just as above that∫
O

|fr|pdx � κ(ai−1, ai) .

We have left to estimate
∫

O
|fx1 |p. By (12) we can write (since

∣∣|x′|−ϕ(ai−1)
∣∣ ≤

λ(x1) for (x1, x
′) ∈ O)

∣∣fx1(x1, x
′)
∣∣ ≤ F ′(x1) +

∣∣F (x1) − F (ai)
∣∣

λ(x1)
.

The Lp(O)-norm of the first term is comparable (since ∆ai � ϕ(ai−1)) to
‖F ′(x1)‖Lp(G) which was already shown to have the desired bound. The second
term is just fr(x1, x

′) whose Lp(O)–norm was already estimated.

Case 2. ∆ai > 5 min
{
ϕ(ai−1), ϕ(ai)

}
.

As in Case 1, we assume ϕ(ai−1) ≤ ϕ(ai), and we let the x1,i–axis be the axis
pointing in the same direction as the x1–axis and passing through the center of
Ωai−1 . Let âi be the ordinate on the x1,i axis which is equidistant to

[
∂ Ω
]
ai−1

and

to the (n − 1)–plane xi = ai. Put ∆̂ai = âi − ai−1. For the remainder of Case 2,
we shall express arguments of fi by using the special coordinates in R

n : (x1, x
′)i,

where xi ∈ R is the position on the x1,i axis and x′ ∈ R
n−1 denotes the coordinates

on the other n − 1 axes which all pass through the x1,i axis at (0, 0′)i =
−⇀
0 i . We

now define fi as follows:

on Ai ∩ Balln
((
ai−1, 0′

)
i
, ϕ(ai−1)

)
: fi ≡ 0 ,

on Mi := Ai ∩ Balln
((
ai−1, 0′

)
i
, ∆̂ai

)
\ Balln

((
ai−1, 0′

)
i
, ϕ(ai)

)
:

fi

(−⇀x i

)
= κ(ai−1 + ϕ(ai−1), r) where

r =
∣∣xi − (ai−1, 0′)i

∣∣, and

on Ai \ Balln
((
ai−1, 0′

)
, ∆̂ai

)
: fi

(−⇀x i

)
= fi

(
âi, 0′

)
i
.

With this definition certainly (i) holds and since ∆ai > 5ϕ(ai−1) we have κ
(
ai−1 +

ϕ(ai−1), âi

) ≈ κ(ai−1, âi) ≈ κ(ai−1, ai) (recall ϕ(ai−1) ≤ ϕ(ai)) whence (ii) holds.
To verify (iii) we compute using polar coordinates.

Observe that on Mi, (using Lemma 2.4)∣∣∣∇fi

(−⇀x i

)∣∣∣ = δΩ∗
(
ai−1 + r, 0′

)−(n−1)/(p−1)

14



(the arguments of δΩ∗ here and below are with respect to the standard coordinate
system, as opposed to those of fi.)

Whence, noting that for r ∈ [ϕ(ai−1), âi − ai−1

]
, r ≈ δΩ∗

(
ai−1 + r, 0′

)
, we have∫

Ai

∣∣∇fi

∣∣pdx =
∫

Mi

∣∣∇fi

∣∣pdx
= c(n)

∫ bai−ai−1

ϕ(ai−1)

rn−1dr

δΩ∗(ai−1 + r, 0′)
n−1
p−1 p

≈ c(n)
∫ bai−ai−1

ϕ(ai−1)

δΩ∗(ai−1 + r, 0′)−
(n−1)
(p−1) dr

≤ c(n)κ(ai−1, ai) .

This completes the proof of the Lemma.

Consider the following restricted supremum of (10):

(13) L0 = sup
i>0

κ(0, ai)p−1mn

(
Ω+

ai

)
.

In order to show that Ω is not a p–Poincaré domain, by Lemma 2.2, it suffices to
construct functions F ∈ (Liploc ∩W 1,p)(Ω) \ {0} satisfying F (x1, x

′) = 0 whenever
x1 < 0 and which have arbitrarily large Rayleigh–Ritz quotients:

RN (F ) =
mn

({F = 1})∫
Ω

∣∣∇F ∣∣p dx .

Case 1. L0 = ∞.
Fix i > 1 large enough so that κ(0, ai) < 1

2κ(a1, ai). Note that by (10) it follows
from Lemma 2.5 that the set {ai : i > 0} of Lemma 2.4 is necessarily infinite.
Although this fact is an immediate consequence of (13) it is important to realize
(since we will also need it in Case 2) that it does indeed follow from (10). Define
Gi : Ω −→ R by

Gi(x1, x
′) =


fj(x1, x

′) +
j−1∑
k=2

max fk if aj−1 ≤ x ≤ aj and 1 < j ≤ i,

0 if x < a1

Gi(ai, 0′) if x > ai .

Then Gi is globally Lipschitz continuous on Ω and by the Lemma,

maxGi =
i∑
2

max fj ≈ κ(0, ai) while

∫
Ω

∣∣∇Gi

∣∣p dx =
i∑
2

∫
Aj

∣∣∇fj

∣∣p dx � κ(0, ai) .

Thus letting Fi = Gi/maxGi, we have

RN (Fi) =
mn

({Fi = 1})∫
Ω

∣∣∇Fi

∣∣pdx � mn

(
Ω+

ai

)
κ(0, ai)−p+1

15



so by (13), sup
i
RN (Fi) = ∞ .

Case 2. L0 <∞.
Let K > 0 be a large number. We assume in particular that K > τL0 where

τ > 0 is a large positive number. Lower bounds on τ shall be specified later, as
needs arise. By (10) we obtain b > ai such that

κ(0, b)p−1mn(Ω+
b ) > K .

Choose i such that
ai−1 < b < ai .

We also assume that i is large enough (which can be converted into a requirement
on the size of τ) to insure that

(14) ∆ai ≤ ai−1 .

Since by construction ∆ai ≤ 2M for each i, if sup ai = ∞ certainly (14) will
eventually hold. If sup ai < ∞ then since 〈ai〉i>0 is an infinite set, we must have
∆ai −→ 0 and once again it is obvious that (14) will eventually hold.

Next, since for b > 0

K < κ(0, b)p−1mn(Ω+
b ) ≤ c(p)

[
κ(0, ai−1)p−1 + κ(ai−1, b)p−1

]
mn(Ω+

b )

≤ c(p)
[
L0 + κ(ai−1, b)p−1mn(Ω+

b )
]

we have

(15) K
(
1 − c(p)τ−1

) ≤ c(p)κ(ai−1, b)p−1mn(Ω+
b ) .

It will now be convenient to split the remainder of the proof into two subcases as
in the proof of the Lemma.

Subcase 2a. ∆ai ≤ 5 min
{
ϕ(ai−1), ϕ(ai)

}
. In this case, by (14) (and using Lemma

2.4 to estimate κ) we have

κ(ai−1, b)p−1mn(Ω+
b ) � κ(0, ai−1)p−1mn(Ω+

b )

≤ κ(0, ai−1)p−1mn(Ω+
ai−1

)

≤ L0

so (15) would yield

K(1 − c(p)τ−1) ≤ c(p)L0 ≤ c(p)τ−1K .

This inequality will be contradictory as soon as τ is sufficiently large. Subcase 2a
is thus dealt with.

Subcase 2b. ∆ai > 5 min{ϕ(ai−1), ϕ(ai)}.
Let ai = 1

2(ai−1 + ai).
As a first reduction, we show that we may assume b > ai and

(16) (i) ϕ(ai) ≤ ϕ(ai−1) and (ii) κ(ai−1, b) � κ(ai, b) .
16



Indeed, first of all, from (14) we can conclude

(17) κ(ai−1, ai) ≤ c(n, p)κ(0, ai−1) .

Now, if (16) were false then we would have

(18) κ(ai−1, b) ≤ 2κ(ai−1, ai) .

But we could then conclude from (15) using (17) and (18) that

K(1 − c(p)τ−1) � κ(0, ai−1)mn(Ω+
ai−1

) ≤ τ−1K

so once again, if τ is sufficiently large, we would have a contradiction so (16) is
established.

Since
mn(Ω+

b ) ≤ c(n)(ai − b)Mn−1 +mn(Ω+
ai

)

we can use (15) and (16) (i) to deduce that

(19)

K(1 − c(p)τ−1) � κ(ai−1, b)p−1mn(Ω+
b )

� κ(ai, b)p−1mn(Ω+
b )

� κ(0, ai)p−1mn(Ω+
ai

) + κ(ai, b)p−1(ai − b)Mn−1 .

We introduce the cylinder Ri about the x1–axis having radius M and projection
[ai − 2M, ai] on the x1–axis. Note that ai > ai − M (since ∆ai ≤ 2M) and
consequently (by Lemma 2.4 and (16 (ii)))

κ(ai, b) �
∫ b

ai

ds

dist
[
(s, 0′),

[
∂Ω∗]

ai

](n−1)/(p−1)

≤ kRi
p

((
ai, 0′

)
,
(
b, 0′

))
.

Combining this inequality with (19) and then applying Lemma 2.5, we obtain:

K
(
1 − c(p)τ−1

)
� L0 + kRi

p

((
ai −M, 0′

)
,
(
b, 0′

))p−1
mn

(
(Ri)+b

)
≤ τ−1K + C(M, p, n)

which is clearly impossible as long as K > C(M, p, n) and τ is sufficiently large.

PART C.

An Example. This example will show that the range of exponents in Theorem A
is best possible. We show that for each p, 1 < p ≤ n− 1, there exists a domain Ω
in R

n for which the condition (1) holds but the p–Poincaré inequality fails.

Since we may assume n ≥ 3, we have

i−n <
1
i
− 1
i+ 1

17



for each i ≥ 2. The Steiner symmetric domain Ω will be defined as in Theorem A
by the following function ϕ :

[− 1, 1
] −→ [

0, 1
]

ϕ(t) =
{

1, if 1
i < 1 − t < 1

i + i−n for i ≥ 2
1 − |t|, otherwise .

To see that (1) holds for this domain Ω and any p ∈ (1, n− 1] we first observe
that δΩ(t, 0′) ≈ 1 − |t| (|t| < 1

)
so that

kΩ
p

(
(0, 0′), (t, 0′)

) ≈ (1 − |t|)(p−n)/(p−1) .

On the other hand,

mn

(
Ω+

|t|
)
≈ mn

(
Ω−

−|t|
)
≈ (1 − |t|)n

and hence we may conclude that the supremum in (1) is dominated by C max
0≤t≤1

(1−
t)p � 1.

In showing that Ω is not a p–Poincaré domain for any p ∈ (1, n − 1] we use
the explicit formulas for the p–capacity of a condensor determined by a pair of
concentric balls (see [Maz–85] §2.2.4). If we take the smaller (n − 1)–dimensional
ball to have radius r < 1

2 and the larger one to have radius

R =
{

2r, if p < n− 1√
r, if p = n− 1 ,

these formulas give:

Capp

(
Balln−1(r),Balln−1(R)

)
=

{
Crn−1−p, if p < n− 1

C
(
log 1√

r

)2−n
, if p = n− 1 .

This means that for each r ∈ (0, 1
2
), there exists a function Ur ∈W 1,p

(
Balln−1(1)

)∩
Liploc

(
Balln−1(1)

)
satisfying Ur(x′) = 1 for |x′| > R, Ur(x′) = 0 for |x′| < r and

∫
Balln−1(1)

∣∣∇Ur(x′)
∣∣pdHn−1(x′) =

{
Crn−1−p if p < n− 1

C
(
log 1√

r

)2−n
, if p = n− 2 .

Aside: In fact, such a function can be explicitly written down.
Now fix i ≥ 2, let ri = 1

i and define a function ui ∈ W 1,p(Ω) ∩ Liploc(Ω) as
follows:

u(x, x′) =
{
Uri

(x′), if 1
i < 1 − x < 1

i + i−n

0, otherwise .

Observe mn

({ui = 1}) ≈ i−n but
∫
Ω

∣∣∇ui

∣∣pdx = o(i−n). Therefore by Lemma 2.2
we conclude that Ω cannot be a p–Poincaré domain.

This completes the proofs of the main results. �
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SECTION 4: AN EXTENSION TO A MORE GENERAL
SOBOLEV–POINCARÉ INEQUALITY

A useful generalization of the p–Poincaré inequality is obtained by using two
possibly different exponents on either side of the inequality.

Definition. A domain Ω ⊆ R
n of finite volume is said to support the (q, p)–

Poincaré inequality (1 ≤ p, q < ∞) (or Ω is called a (q, p)–Poincaré domain) if
there exists a positive number C such that

(20) ‖u− uΩ‖Lq(Ω) ≤ C‖∇u‖Lp(Ω)

holds for all functions u ∈W 1,p(Ω).

When p ≤ q, (q, p)–Poincaré domains have a concrete characterization which is
analogous to the one given in Lemma 2.2 for p–Poincaré domains.

Lemma 4.1. Assume that Ω ⊆ R
n is a domain of finite volume, let 1 ≤ p ≤ q <∞

and let B0 ⊆ Ω be a ball. Then Ω is a (q, p)–Poincaré domain if and only if for
each function u ∈ Liploc(Ω) ∩W 1,p(Ω) which vanishes on B0 we have:

(21) mn

({u = 1})p/q ≤ D

∫
Ω

∣∣∇u∣∣pdx ,
where D is a fixed positive constant.

The proof is similar to that of Lemma 2.2 (see [18] and [12]), we omit the details.
In light of this lemma and Theorem A, it seems quite plausible that for a Steiner
symmetric domain as considered in Theorem A and p > n− 1, the (q, p)–Poincaré
inequality might be equivalent to the following inequality:

(22) sup
x∈Projx1

(Ω)

kΩ
p

(
(0, 0′), (x, 0′)

)p−1
mn

(
T (Ωx)

)p/q
<∞ .

The following example shows that such a result is not possible. (One could also
use a domain with an outward directed cusp of exponential order.)

Example 4.2. Fix p, 1 < p <∞.
We construct a domain Ω ⊆ R

n for which (22) holds for all q, p ≤ q ≤ q0,
q0 > p, but on which the (q, p)–Poincaré inequality fails for any q > p. In fact, one
can take q0 = np/(n− p) when p < n and q can be taken to be any finite number
when p ≥ n.

Since the domain to be constructed is Steiner symmetric, it is enough to specify
a nonnegative function ϕ(x1) which gives the radius of the (ball) cross–sections
Ωx1 . To define ϕ : [−1, 1] −→ [0, 2] we begin by noting that for each i ≥ 2 we have

2−i <
1

(i− 1)
− 1
i
.

Next we define

ϕ(t) =
{

2, if 1
i < t < 1

i + 2−i, i ≥ 2
1 − |t|, otherwise .
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To show that Ω is not a (q, p)–Poincaré domain for any q > p, we will use Lemma
4.1. For this we construct, for each i ≥ 2 a function ui ∈ W 1,p(Ω) ∩ Liploc(Ω) as
follows:

ui(x1, x
′) =


1, if x1 ∈ ( 1

i ,
1
i + 2−i

)
, i ≥ 2 and |x′| > 5

3

3
(|x′| − 4

3

)
, if x1 ∈ ( 1

i
, 1

i
+ 2−i

)
, i ≥ 2 and 4

3
≤ |x′| ≤ 5

3

0, otherwise .

Note that
∣∣∇ui

∣∣ ≤ c0, where c0 <∞ is independent of i. Whence we have∫
Ω

∣∣∇ui

∣∣pdx ≈ 2−i

and
mn

({ui = 1}) ≈ 2−i .

From these two relations we immediately conclude that (21) cannot hold on Ω and
hence that Ω cannot be a (q, p)–Poincaré domain for any q > p. On the other
hand, using the fact that δΩ(x1, 0′) ≈ δeΩ(x1, 0′)

(|x1| < 1
)

where Ω̃ is defined by
the graph ϕ̃(x1) = 1 − |x1|, a simple computation shows that (22) holds for the
indicated values of q.

Despite the above example, there is a more restrictive class of Steiner symmetric
domains in R

n for which (22) is indeed equivalent to the (q, p)–Poincaré inequality.
This is the content of our next result which is a restatement of Theorem C.

Theorem 4.3. Assume that Φ : R −→ [0,∞) is Lipschitz continuous and

Ω =
{
(x1, x

′) ∈ R × R
n−1 : |x′| < Φ(x1)

}
= Ω∗

is a domain of finite volume. We may assume Φ(0) > 0. Then for p > 1 and
p ≤ q ≤ q0, Ω is a (q, p)–Poincaré domain if and only if

(22) sup
x∈Projx1

(Ω)

kΩ
p

(
(0, 0′), (x, 0′)

)p−1
mn

(
T (Ωx)

)p/q
<∞ .

Here q0 can be taken to be np
n−p when p < n and q can be any positive number (≥ p)

when p > n.

Before going to the proof we record the special case of Theorem 4.3 when q = p.

Corollary 4.4. If in Theorem A, the function ϕ is assumed to be Lipschitz con-
tinuous, then the conclusion will hold for all p > 1.

Proof of Theorem 4.3.

Part I: Necessity of (22) for the (q, p)–Poincaré inequality.
In uniformly bounding the quantity inside the supremum of (22), we may assume
x = t > 0. Define

G(x1, x
′) =


∫ x1

0
Φ(s)(1−n)/(p−1)ds, if 0 ≤ x1 ≤ t∫ t

0
Φ(s)(1−n)/(p−1)ds, if x1 > t

0, if x1 < 0
20



and let F = G/maxG. Since

{F = 1} = Ω+
t , and∫

Ω

∣∣∇F ∣∣pdx ≈
∫ t

0

Φ(s)(1−n)/(p−1)ds

we get from Lemma 4.1 the inequality

mn(Ω+
t )p/q � D

[∫ t

0

Φ(s)(1−n)/(p−1)ds

]1−p

which is tantamount to (22).

Part II. Sufficiency of (22) for the (q, p)–Poincaré inequality.
We consider a function u as in Lemma 2.1. Let M = maxΦ. Fix x1 > 0 and

put Bx = Balln
(
(x1, 0′), 1

2δΩ(x1, 0′)
)
.

Case 1. ux1 := 1
mn(Bx1 )

∫
Bx1

u(x)dx ≤ 1
2 . Letting Ω(x1) =

{
(x, x′) ∈ Ω : |x −

x1| ≤ 1
2δΩ(x1, 0′)

}
, we have

∫
Ω(x1)

|u− ux1 |qdx � mn

({u = 1} ∩ Ω(x1)
)
. A simple

calculation shows that the formula Ψ(x, x′) =
(
x, Φ(x1)

Φ(x) x
′) defines a bilipschitz

mapping on Ω(x1) with a fixed bilipschitz constant (independent of x1) CΨ which
can be taken � L2 + 1, where L is the Lipschitz constant of Φ. This means that,
for each pair (x, x′), (y, y′) ∈ Ω(x1) we have:

C−1
Ψ

∣∣(x, x′) − (y, y′)
∣∣ ≤ ∣∣Ψ(x, x′) − Ψ(y, y′)

∣∣ ≤ CΨ

∣∣(x, x′) − (y, y′)
∣∣ .

It is an elementary fact that bilipschitz mappings convert (q, p)–Poincaré do-
mains to (q, p)–Poincaré domains with comparable constants (for a slightly more
general result when p = q, we refer to [22] Lemma 7.1(d)).

Now, Ψ(Ω(x1)) is a cylinder with radius Φ(x1) and length δΩ(x1, 0′) ≤ Φ(x1) ≤
M . Since all such cylinders have Poincaré constants which are uniformly bounded
(they are bilipschitz equivalent to a ball), we may conclude that each Ω(x1) will be
a (q, p)–Poincaré domain with a constant C independent of x1. Hence(∫

Ω(x1)

|u− ux1 |qdx
)p/q

�
∫

Ω(x1)

|∇u|pdx

and so

(23) mn

({u = 1} ∩ Ω(x1)
)p/q �

∫
Ω(x1)

∣∣∇u∣∣pdx .
Case 2. ux1 >

1
2 . Let t be the first such x1. In this case we can use a “chaining

argument” very similar to the one used in Case 2 of Part A in Section 3 to show
that

(24) mn(Ω+
t )p/q �

∫
Ω

∣∣∇u∣∣pdx
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Since p/q ≤ 1 we can take a sequence {ti}∞i=1 ⊆ Projx1
(Ω) such that Ω = ∪Ω(ti)

and ΣχΩ(ti) ≤ K < ∞ on Ω and sum up the corresponding inequalities (23) and
(24) to obtain

mn

({u = 1})p/q �
∫

Ω

∣∣∇u∣∣pdx
and the result is established. �
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