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Abstract. We determine geometric necessary and sufficient conditions on a class
of strip-like planar domains in order for them to satisfy the Poincaré inequality with

exponent p, where 1 ≤ p < ∞. The characterization uses hyperbolic geodesics in
the domain and a metric which depends on p and generalizes the quasi-hyperbolic

metric in the case p = 2. As an application, we show that the Poincaré inequality is

preserved under Steiner symmetrization of these domains but not in general.
We also show that the our geometric condition is preserved under bounded length

distortion (BLD) mappings of a domain and thus extend the class of domains for

which our characterization is valid.

1. Introduction

For a b > 0, we call a connected planar domain Ω a b-strip provided that for
each real x the cross-section Ωx = {y : (x, y) ∈ Ω} is either the empty set or else an
interval of length no greater than b. Obviously, a b-strip is simply connected since
every boundary point can be connected to infinity by a vertical ray.

Given a planar domain Ω with finite area, m2(Ω) < ∞, we say that Ω is a
p-Poincaré domain provided that

sup
u

∫
Ω

|u− uΩ|p dm2∫
Ω

|∇u|p dm2
= Mp

p (Ω) <∞

holds, where the supremum is taken over all nonconstant functions u in the Sobolev
space W 1,p(Ω) and uΩ denotes the m2-average value of u over Ω. Meyers and Serrin
[MySer] have shown that C1(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω), so one only needs
to consider such functions to establish that a domain Ω is a p-Poincaré domain.

We define a metric on Ω for each 1 < p < ∞. The metric kp,Ω on Ω is defined
by

kp,Ω(z1, z2) = inf
γ

∫
γ

ds

δ
1/(p−1)
Ω

,
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where the infimum is taken over all rectifiable arcs γ joining z1 to z2 in Ω, δΩ(z)
denotes the Euclidean distance from z to the boundary of Ω and ds denotes inte-
gration with respect to arc length. The metric will be denoted simply by kp when
the domain of definition is clear. These metrics were introduced in [SmSt90], where
they were used to investigate the Poincaré inequality on domains in Rn.

Assume from now on that Ω is simply connected domain with nonempty bound-
ary. Then, Ω is conformally equivalent to the unit disk and hence we can define the
hyperbolic metric on Ω by means of this equivalence and the geodesics in this met-
ric are just the images of the real axis under the class of Riemann mappings onto
Ω. Observe that when p = 2 we have that k2 is the well-known quasi-hyperbolic
metric introduced by Gehring and Palka in [GePa]. It is a consequence of the Koebe
distortion theorems that these two metrics are comparable.

Fix a simply connected domain Ω with finite area and let w0 ∈ Ω. An open
Jordan arc C in Ω is a separating arc provided Ω \ C has two components. If
w0 /∈ C, then we denote by Ω(C) the component not containing w0. Of course,
every crosscut of Ω is a separating arc but the converse is false since the ends of
a separating arc may not converge to a pair of points in ∂Ω. Every hyperbolic
geodesic is a separating arc and we will be interested in the following geometric
quantity on Ω:

Kp,Ω(w0) = sup
τ
kp−1

p (w0, τ) ·m2(Ω(τ))

where the supremum is taken over all hyperbolic geodesics τ with w0 /∈ τ . For
a b-strip Ω we have that Ωx is a vertical crosscut whenever it is nonempty. Put
x0 = <w0, then we define

Vp,Ω(w0) = sup
L
kp−1

p (w0, L) ·m2(Ω(L))

where the supremum is taken over all vertical crosscuts Ωx with x 6= x0. In the
case p = 1, the k1-metric is not defined; nevertheless, in §6 we show that there are
natural analogs to the above quantities.

With these extended definitions we now state our main results:

Theorem A. Let Ω be a b-strip with finite area and 1 ≤ p < ∞. The following
are equivalent:

(a) Ω is a p-Poincaré domain.
(b) Kp,Ω(w0) <∞.
(c) Vp,Ω(w0) <∞.

Theorem B. Let Ω be any simply connected domain with finite area and 1 ≤ p <
∞. A necessary condition for Ω to be a p-Poincaré domain is that Kp,Ω(w0) be
finite for every w0 ∈ Ω.

Finally, if Ω is a domain for which m1(Ωx) <∞ for all real x then we define its
Steiner symmetrization to be the domain

Ω? =
{
x+ iy : |y| < 1

2
m1(Ωx) and Ωx 6= ∅

}
.
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It is natural to ask if Steiner symmetrization preserves p-Poincaré domains.
Pólya [Pól] showed this to be true for an analogous problem in which functions are
normalized by the assumption that they vanish on the boundary of the domain.
Surprisingly, in our case where the functions have mean value zero, the answer is
no! We give examples of this in §5 and §6. Nevertheless, we do have the following
results:

Theorem C. Let Ω be a planar domain with finite area.
(a) Suppose that Ω be a b-strip and that 1 < p < ∞. If Ω is a p-Poincaré

domain, then so is Ω?.
(b) Suppose that m1(Ωx) ≤ b <∞ for all x. If Ω is a 1-Poincaré domain, then

so is Ω?.

These theorems are motivated by and considerably generalize several of the re-
sults in [EvHar], [SmSt87] and [SmSt90]. In particular, in [SmSt87] a version of
Theorem A, for p = 2, was given for certain types of domains and a counterexample
was constructed showing that some geometric restrictions on the domain are nec-
essary for the equivalence of (a) and (b). See also the end of §7 where comparisons
are made between our results and these earlier works.

We also point out that Maz’ja has given a capacitary characterization of p-Poin-
caré domains; see Theorem 1 of §4.4.3 in [Maz85]. Unfortunately, it is not clear
how to translate Maz’ja’s condition into a geometric condition on Ω. In §4 we
explicitly construct a function which does determine the capacity of one of Maz’ja’s
condensers.

The relationship between the quantities Vp,Ω(w0) and Kp,Ω(w0), where Ω is a
b-strip, is developed in §2, and the sufficiency of Vp,Ω(w0) < ∞ for the p-Poincaré
inequality to hold on such a domain Ω is established in §3. We remark that the proof
of sufficiency could alternately have been based on methods developed in [SmSt87].
The proof of the necessity of Kp,Ω(w0) < ∞ for a simply connected domain to be
p-Poincaré domain is in §4, and our results on the effect symmetrization has on
the p-Poincaré inequality are in §5. Throughout these sections it is assumed that
p > 1. The Poincaré inequality with exponent p = 1 requires different techniques,
and §6 is devoted to this case. Finally, the paper concludes with a section in which
we extend our results on b-strips to domains that are bilipschitzian images of them.

2. Comparing Vertical Crosscuts with Hyperbolic Geodesics

For a simply connected domain Ω with nonempty boundary we define the hy-
perbolic metric by

ρΩ(w1, w2) = ρD(z1, z2)

where the zi’s corresponds to the wi’s under a conformal mapping of the unit disk
D onto Ω and

ρD(z1, z2) = inf
γ

∫
γ

2|dz|
1 − |z|2 ,

where the infimum is taken over all rectifiable arcs connecting z1 to z2 in D. This
metric is conformally invariant and the geodesics are the image of (−1, 1) under
arbitrary Möbius transformation of D. Since ρD is conformally invariant so is ρΩ
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and hence it does not depend on the conformal map in its definition, see [Ahl] or
Chapter 4.6 of [Pom92].

From the theory of conformal mapping, we will need the following four results.
The first is a conformally invariant version of Theorem 10.8 on page 311 in [Pom75].
The second is a consequence of the distortion theorem, see Chapter 2 [Pom75]. The
third result provides a useful geometric property of hyperbolic geodesics. The fourth
result is a theorem of Gehring and Hayman, see [GeHa].

Throughout the remainder of the paper, we use the symbols “≈”, “.” and “&”
to mean, respectively, “equal to”, “less than or equal to” and “greater than or equal
to”, “modulo a multiplicative constant which depends (at worst) on the parameter
p”, e.g., for nonnegative a, b we have (a+b)p . ap +bp. We denote the arc length of
a rectifiable curve γ by Λ(γ). More generally, we will denote by Λ(E) the Hausdorff
1-dimensional measure of a set E.

Lemma 2.1. Let f : D → Ω be a conformal mapping. If a ∈ D, and ε > 0 is given,
then there exists a set E = E(f, ε, a) ⊂ ∂D of harmonic measure ωa(E) < ε; with
respect to a, with the following property: If γ(a, eiθ) denotes the hyperbolic ray in
D from a to eiθ then for each eiθ ∈ ∂D \ E, we have

Λ(f(γ(a, eiθ))) < c(ε)δΩ(f(a)) ,

where, as indicated, the constant c(ε) depends only on ε.

Lemma 2.2. Let Ω be a simply connected domain with nonempty boundary. Then,
(a) 1

2ρΩ(w1, w2) ≤ k2(w1, w2) ≤ 2ρΩ(w1, w2) for all w1, w2 ∈ Ω, and
(b) if w1 and w2 are points Ω and with ρΩ(w1, w2) = 1/4 and if γ is the hyper-

bolic geodesic arc in Ω with endpoints w1 and w2, then

Λ(γ) ≈ δΩ(w1) and δΩ(w) ≈ δΩ(w1)

for all w ∈ γ.

Lemma 2.3. Let Ω be a simply connected domain with nonempty boundary. Sup-
pose that γ is a hyperbolic geodesic in Ω containing the points w−, w0, and w+

where the hyperbolic distance between w0 and either of these points is 1/4. Let τ−
(τ+) denote the (uniquely determined) hyperbolic geodesic through w− (w+) which
is orthogonal to γ. Then, there is a hyperbolic geodesic crosscut τ through w0 which
is disjoint from τ− and τ+ and satisfies:

Λ(τ) ≈ δΩ(w0).

Remark. The angle τ makes with γ at the point w0 is close to π/2 and we will refer
to this geodesic as being nearly orthogonal to γ.

Proof. Let f : D → Ω be a conformal mapping of the disk onto Ω which maps
zero to w0, (−1, 1) onto γ and a point 0 < r+ < 1 onto w+. Then, f(−r+) = w−
and f−1(τ−), f−1(τ+) are hyperbolic geodesics in D. Hence, they are circular arcs
which are orthogonal to both ∂D and the real axis. Since

log
1 + r+
1 − r+

= ρD(0, r+) = ρΩ(w0, w+) =
1
4
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we see that these hyperbolic geodesics in D divide ∂D into four subarcs of approx-
imately the same arc length. Hence the harmonic measure of each of these arcs,
evaluated at the origin, is bounded from zero by a positive absolute constant.

Applying Lemma 2.1 we easily produce a hyperbolic geodesic in Ω with the
required length by choosing an appropriate diameter of D. Finally, it is clear that
any separating curve of Ω which has finite length must also be a crosscut. �

Lemma 2.4(Gehring-Hayman Theorem). Let Ω be a simply connected domain
with nonempty boundary. Given an arc α (with distinct endpoints) in Ω, we let γ
denote the hyperbolic geodesic arc of Ω with the same endpoints as α. Then

Λ(γ) . Λ(α) .

Let Ω be a simply connected planar domain with nonempty boundary. Suppose
that γ is a hyperbolic geodesic containing the distinct points w0, w. Let τ0 (τ)
denote a hyperbolic geodesic through w0 (w) which is nearly orthogonal to γ and
has length comparable to δΩ(w0) (δΩ(w)) as in Lemma 2.3. Let γ(w0, w) be the
part of γ connecting these points in Ω. We then have the following two lemmas:

Lemma 2.5. Suppose that ρΩ(w0, w) = 1 and that σ is any arc in Ω with one
endpoint in τ0 and the other in τ . Then

Λ(σ) & Λ(γ(w0, w)) ≈ δΩ(w0).

Proof. Let w1 be the hyperbolic midpoint between w0 and w. By Lemma 2.3 the
hyperbolic geodesic τ− which is orthogonal to γ at the hyperbolic midpoint between
w0 and w1 satisfies τ0 ∩ τ− = ∅. Similarly, the hyperbolic geodesic τ+ orthogonal
to γ at the hyperbolic midpoint between W1 and w satisfies τ+ ∩ τ = ∅. Let σ′ be
any hyperbolic geodesic arc with one endpoint in σ ∩ τ− and the other in σ ∩ τ+.

Now let f : D → Ω be a conformal mapping of D onto Ω which maps the origin
to w1 and (−1, 1) onto γ. The geodesics τ+, τ− correspond to circular subarcs of
circles which are orthogonal to ∂D and the real axis. Similarly, σ′ corresponds to
circular subarc of a circle orthogonal to ∂D which intersects the other two. Simple
geometry and the conformal invariance of the hyperbolic metric show that there is
a point w′

1 ∈ σ′ with ρΩ(w1, w
′
1) ≈ 1.

Clearly, the endpoints of σ′ are a hyperbolic distance at least 1/2 apart and
hence Λ(σ′) & δΩ(w′

1) by Lemma 2.2(b). Now the Gehring-Hayman theorem and
Lemma 2.2(b) again shows that

Λ(σ) & Λ(σ′) & δΩ(w′
1) ≈ δΩ(w0) ≈ Λ(γ(w0, w))

which proves the lemma. �

The metrics kp depend, of course, on p. Nevertheless, the best curves to be
used in the computation of this distance are essentially the same as the hyperbolic
geodesics as is shown by the following lemma.
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Lemma 2.6. If ρΩ(w0, w) ≥ 1, then for each p, 1 < p <∞, we have

(1)
∫

γ(w0,w)

ds

δ
1/(p−1)
Ω

≈ kp(w0, w) ≈ kp(w0, τ) ≈ kp(τ0, τ).

Moreover, the first relation is true even when ρΩ(w0, w) < 1.

Proof. Assume that ρΩ(w0, w) ≥ 1. Let n be the positive integer determined by
n ≤ ρΩ(w0, w) < n + 1. Denote by w1, . . . , wn the points on γ(w0, w) determined
by the relation ρΩ(w0, wm) = m and δm = δΩ(wm). Let γm be the portion of γ
between wm−1 and wm for 1 ≤ m ≤ n. By Lemma 2.2,

(2) Λ(γm) ≈ δm and δΩ(w) ≈ δm

for all w ∈ γm.
By Lemma 2.3 there is a hyperbolic geodesic τm which contains the point wm,

whose arc length is comparable to δm and is nearly orthogonal to γ, for 1 ≤ m ≤ n.
Let w′

0 ∈ τ0, w′ ∈ τ , and γ′ be any rectifiable curve from w′
0 to w′. We divide

γ′ into n subarcs where γ′m denotes the subarc that starts at a point on τm−1 and
ends at a point on τm. By our construction, there must exist a point w′

m ∈ γ′m∩τm
and hence where δΩ(w̃m) . δm since the length of τm is comparable to δm.

By Lemma 2.5, δm . Λ(γ′m) for all 1 ≤ m ≤ n. Combining this fact with the
above, we see that there is a subarc of γ′m of length comparable to δm on which
δΩ(z) . δm. Hence, by the above and (2) we have∫

γ′

ds

δ
1/(p−1)
Ω

≥
n∑

m=1

∫
γ′

m

ds

δ
1/(p−1)
Ω

&
n∑

m=1

δm

δ
1/(p−1)
m

&
n∑

m=1

∫
γm

ds

δ
1/(p−1)
Ω

=
∫

γ(w0,w)

ds

δ
1/(p−1)
Ω

.

Taking infimums we obtain that kp(τ0, τ) dominates the left-hand side of (1). Thus,

kp(τ0, τ) ≤ kp(w0, τ) ≤ kp(w0, w) ≤
∫

γ(w0,w)

ds

δ
1/(p−1)
Ω

. kp(τ0, τ)

and (1) follows.
Finally, suppose now that ρΩ(w0, w) < 1. Let σ be any curve in Ω with endpoints

w0 and w. By the Gehring-Hayman theorem, Λ(σ) & Λ(γ(w0, w)), and hence by
Lemma 2.2 we have∫

σ

ds

δ
1/(p−1)
Ω

& Λ(γ(w0, w))

δ
1/(p−1)
0

≈
∫

γ(w0,w)

ds

δ
1/(p−1)
Ω

≥ kp(w0, w).

Taking infimums over all such σ gives comparability of the above quantities which
proves the lemma. �
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Now let Ω be a b-strip. Since Ω is connected, the set {x : Ωx 6= ∅} must be an
interval (α, β), where −∞ ≤ α, β ≤ ∞. Let αn ↘ α and βn ↗ β. Thus, we have
two nested sets of crosscuts; namely, {Ωαn

} and {Ωβn
}. It follows that there exists

a hyperbolic geodesic γ in Ω, parametrized by (−1, 1), with the property that

lim
t↘−1

<γ(t) = α and lim
t↗1

<γ(t) = β.

We will call any hyperbolic geodesic γ satisfying the above a centerline for the
b-strip Ω.

Theorem 2.7. Suppose that Ω is a b-strip, γ is a centerline for Ω and w0 ∈ γ.
Then, for 1 < p <∞

Vp,Ω(w0) . Kp,Ω(w0) + bp.

Proof. We let L be a vertical crosscut with abscissa x 6= <w0. Without loss of
generality we will assume that x > <w0. Let w2 be the point where γ first intersects
L (starting at w0). By Lemma 2.6

kp(w0, w2) ≈
∫

γ(w0,w2)

ds

δ
1/(p−1)
Ω

.

Next, we single out the point w1 ∈ γ which satisfies∫
γ(w0,w1)

ds

δ
1/(p−1)
Ω

=
∫

γ(w1,w2)

ds

δ
1/(p−1)
Ω

.

First assume that the hyperbolic distance from w0 to w1 is at least 1. By Lemma 2.3
and Lemma 2.6, we let τ1 denote a hyperbolic geodesic which is nearly orthogonal
to γ, passes through w1 and satisfies

(3) Λ(τ1) ≈ δΩ(w1) and kp(w0, τ1) ≈ kp(w0, w1).

Case 1. τ1 ∩ L = ∅.
In this case, we find from (3), Lemma 2.6, and the choice of w1 that

kp(w0, L) ≤ kp(w0, w2) ≈
∫

γ(w0,w2)

ds

δ
1/(p−1)
Ω

= 2
∫

γ(w0,w1)

ds

δ
1/(p−1)
Ω

≈ kp(w0, τ).

By our construction, w1 /∈ Ω(L) so we clearly have that Ω(L) ⊂ Ω(τ1). Hence, we
obtain

kp−1
p (w0, L) ·m2(Ω(L)) . kp−1

p (w0, τ1) ·m2(Ω(τ1)),

which is the desired inequality without the extra bp term.

Case 2. τ1 ∩ L 6= ∅.
First we choose a point w? ∈ γ(w1, w2) which satisfies

δΩ(w?) = min{δΩ(w) : w ∈ γ(w1, w2)}.
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Since Λ(τ1) ≈ δΩ(w1) < b and Λ(L) ≤ b, it follows that there is an arc in Ω of
length . b which connects w1 to w2. Thus, the Gehring-Hayman theorem implies
that

Λ(γ(w1, w2)) . b.

The preceding inequality, in conjunction with Lemma 2.6, and the way in which we
chose w1 leads to

(4) kp(w0, w
?) ≈

∫
γ(w0,w?)

ds

δ
1/(p−1)
Ω

≈
∫

γ(w1,w2)

ds

δ
1/(p−1)
Ω

. b

δΩ(w?)1/(p−1)
.

The hyperbolic geodesic which we shall use for comparison will be a geodesic τ?

which is nearly orthogonal to γ at the point w? and satisfies Λ(τ?) ≈ δΩ(w?).
Let f : D → Ω be a conformal map which maps (−1, 1) onto γ with <f(t) → β as

t→ 1. Since τ? is a crosscut, it has endpoints ζ+, ζ− ∈ ∂Ω; where ζ+ corresponds
(under the map f) to a point of ∂D with positive imaginary part. A straightforward
application of the Jordan curve theorem shows that the rays:

Z+ = {w : <w = <ζ+,=w ≥ =ζ+} and Z− = {w : <w = <ζ−,=w ≤ =ζ−}
are contained in the complement of Ω. As a consequence we have the following: if
w ∈ Ω and <w ≥ max{<ζ : ζ ∈ τ?} , then w ∈ Ω(τ?).

If τ? ∩L is nonempty then by the above we see that Ω(L) \Ω(τ?) is contained in
a vertical strip of width comparable to δΩ(w?). On the other hand, if τ? is disjoint
from L, then Ω(L) ⊂ Ω(τ?) since w? /∈ Ω(L). In either case we have that

m2(Ω(L)) . m2(Ω(τ?)) + bδΩ(w?) .

From (4), the definition of w2 and Lemma 2.6 we have,

kp−1
p (w0, L) ·m2(Ω(L)) . kp−1

p (w0, w
?)(m2(Ω(τ?)) + bδΩ(w?))

. kp−1
p (w0, τ

?) ·m2(Ω(τ?)) +
bp−1

δΩ(w?)
bδΩ(w?) ≤ Kp,Ω(w0) + bp.

Finally, suppose that the hyperbolic distance between w0 and w1 is less than
1. Then, there is a point w3 ∈ γ beyond w1 for which ρΩ(w0, w3) = 1. Let
τ3 be a hyperbolic geodesic which is nearly orthogonal to γ at w3 and satisfies
Λ(τ3) ≈ δΩ(w3). Put δ0 = δΩ(w0). By Lemma 2.2(b) and Lemma 2.6 it follows
that

δ0

δ
1/(p−1)
0

≈
∫

γ(w0,w3)

ds

δ
1/(p−1)
Ω

≈ kp(w0, w3) ≈ kp(w0, τ3)

and that Ω(L) \ Ω(τ3) is contained in a vertical strip of width comparable to δ0.
Since kp(w0, L) ≈ kp(w0, w1), we have

kp(w0, L)p−1 ·m2(Ω(L)) . kp(w0, τ3)p−1(m2(Ω(τ3)) + bδ0)

. kp(w0, τ3)p−1m2(Ω(τ3)) + bδp−1
0

. Kp,Ω(w0) + bp .

This completes the proof. �
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3. b-Strips and the Poincaré Inequality

In this section we prove that (b) implies (a) of Theorem A in the introduction.
Our technique will be to decompose Ω into a countable collection W of dyadic
Whitney squares (with disjoint interiors) on which the Poincaré inequality clearly
holds and then use the geometry of Ω to combine these estimates. More precisely,
we assume that any domain Ω is the disjoint union of squares Q ∈W of the form

Q = {x+ iy : a ≤ x < a+ 2−n and b ≤ y < b+ 2−n}
where 2na, 2nb and n are integers. We denote by d(Q) the side length 2−n of Q
and let wQ = a+ ib. Moreover, neighboring squares are of comparable size and the
quantities d(Q) and δΩ(wQ) are comparable. See Chapter 6 of Stein’s book [Ste]
for the existence of such a decomposition.

We will use a different normalization for the Poincaré inequality in place of
Mp(Ω). Fix a domain Ω of finite area and a point w0 ∈ Ω. Denote by D0 the disk
D(w0, r0) ⊂ Ω where r0 ≤ 1

2
δΩ(w0). Put

Np
p,Ω(D0) = sup

u

∫
Ω

|u|p dm2∫
Ω

|∇u|p dm2

where the supremum is over all u ∈ C1(Ω) ∩ W 1,p(Ω) that vanish on D0. The
following two results are Lemma 5 and Lemma 8 in [SmSt90].

Lemma 3.1. Let Ω be as above and 1 ≤ p <∞. Then,

Mp(Ω) . Np,Ω(D0) .
( m2(Ω)
m2(D0)

)1/p
Mp(Ω).

Lemma 3.2. Let Ω and W be as above. If Q1, . . .Qn is a chain of squares in W ,
i.e., the side of Qj−1 is contained in the side of Qj or vice-versa, then

|uQn
− uQ1 | .

n∑
j=1

1
d(Qj)

∫
Qj

|∇u|.

Lemma 3.3. Let Ω be a b-strip containing the square Q = (0, a) × (0, a) and
1 ≤ p <∞. If Ωx = ∅ for all x /∈ (0, a), then∫

Ω

|u− uΩ|p .
∫
Ω

|u− uQ|p . bp
∫
Ω

|∇u|p

whenever u ∈W 1,p(Ω).

Proof. Let u ∈ C1(Ω)∩W 1,p(Ω) then by a familiar argument we have for 1 ≤ p <∞
that ∫

Ω

|u− uΩ|p .
∫
Ω

|u− uQ|p dm2 + |uΩ − uQ|pm2(Ω) ≤ 2
∫
Ω

|u− uQ|p.
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Now consider w1 = (x1, y1) ∈ Ω and w2 = (x2, y2) ∈ Q. By Calculus we have

|u(x1, y1) − u(x2, y2)|p . |u(x1, y1) − u(x1, y2)|p + |u(x1, y2) − u(x2, y2)|p

≤ bp−1

∫
Ωx1

|∇u(x1, t)|p dt+ ap−1

∫ a

0

|∇u(s, y2)|p ds.

Hence∫
Ω

|u− uQ|p dm2(w2) ≤
∫
Q

dm2(w2)
a2

∫
Ω

|u(w1) − u(w2)|p dm2(w1)

.
∫
Q

dm2(w2)
a2

∫
Ω

bp−1

∫
Ωx1

|∇u(x1, t)|p dt+ ap−1

∫ a

−a

|∇u(s, y2)|p ds

 dm2(w1)

=
∫
Ω

|∇u(w1)|pm1(Ωx1)b
p−1 dm2(w1) + ap−2m2(Ω)

∫
Q

|∇u|p dm2

. bp
∫
Ω

|∇u|p dm2.

The result now follows by combining the above two inequalities and taking lim-
its. �

Remark. Observe that we have proved that Mp(Ω) . b for the regions described in
the lemma. This contains the classical fact that Mp(Q) . d(Q) whenever Q is a
square.

Lemma 3.4. Let am ≥ 0, bm ≥ 0 and cm > 0 for all m = 0, 1, . . . and 1 < p <∞.
Put Am =

∑m
0 aj, Bm =

∑∞
m bj and Cm =

∑m
0 cj then

∞∑
m=0

Ap
mbm . [sup

m
Cp−1

m Bm]
∞∑

m=0

ap
m

cp−1
m

.

Proof. Let A−1 = C−1 = 0, q = p/(p − 1) and K = supCp−1
m Bm. For simplicity

we assume that only finitely many aj ’s are nonzero. By summation by parts, the
mean value theorem and Hölder’s inequality we get

(1)

∞∑
m=0

Ap
mbm =

∞∑
m=0

Ap
m(Bm −Bm+1) =

∞∑
m=0

(Ap
m − Ap

m−1)Bm

≤ p

∞∑
m=0

Ap−1
m amBm

≤ p
( ∞∑
m=0

ap
m

cp−1
m

)1/p( ∞∑
m=0

cmA
p
mB

q
m

)1/q
.
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Moreover,

∞∑
m=0

cmA
p
mB

q
m =

∞∑
m=0

(Cm − Cm−1)Ap
mB

q
m =

∞∑
m=0

Cm(Ap
mB

q
m −Ap

m+1B
q
m+1)

=
∞∑

m=0

CmA
p
m(Bq

m −Bq
m+1) +

∞∑
m=0

Cm(Ap
m − Ap

m+1)B
q
m+1

≤
∞∑

m=0

qCmB
q−1
m Ap

mbm +
∞∑

m=0

CmB
q−1
m (Ap

m+1 − Ap
m)Bm+1

≤ (q sup
m
CmB

q−1
m

) · ( ∞∑
m=0

Ap
mbm +

∞∑
m=0

(Ap
m+1 − Ap

m)Bm+1

)
=
(
qK1/(p−1)

) · ( ∞∑
m=0

Ap
mbm +

∞∑
m=1

(Ap
m − Ap

0)bm
)

≤ (2qK1/(p−1)
) · ( ∞∑

m=0

Ap
mbm

)
.

Combining the above inequality with (1) yields

∞∑
m=0

Ap
mbm ≤ pp(2q)p−1K

∞∑
m=0

ap
m

cp−1
m

.

Taking limits proves the lemma. �
Theorem 3.5. If Ω is a b-strip, h0 ∈ Ω and ∆0 is the disk D(h0, ρ0) with ρ0 =
1
2δΩ(h0), then

Np
p,Ω(∆0) . Vp,Ω(h0) + bp

m2(Ω)
m2(∆0)

.

Proof. Let Ω be a b-strip and W a Whitney decomposition of Ω into dyadic squares.
For each square Q ∈W we define

R(Q) = {w ∈ Ω : <w = <z, some z ∈ Q}

so that R(Q) is the portion of Ω in the vertical strip determined by Q. Since Ω is
a b-strip it follows that so is each R(Q).

Let γ be a centerline for Ω as defined prior to the proof of Theorem 2.7. LetW (γ)
denote the squares Q ∈ W that contain a point of γ. Given two squares Q1, Q2 ∈
W (γ), observe, from the properties of dyadic intervals, that if R(Q1) ∩ R(Q2) is
nonempty then either

R(Q1) ⊂ R(Q2) or R(Q2) ⊂ R(Q1).

Thus, the subcollection {R(Q)}, where Q ∈ W (γ) and R(Q) is maximal with
respect to set inclusion, gives a decomposition of Ω. Using the natural ordering



12 WAYNE SMITH, ALEXANDER STANOYEVITCH AND DAVID A. STEGENGA

obtained from their real parts we see that there is a doubly infinite sequence of
squares {Qj}∞j=−∞ in W satisfying:

(a) Qj ∩ γ 6= ∅ for all j,
(b) Ω =

⋃
R(Qj),

(c) R(Qi) ∩R(Qj) = ∅ whenever i 6= j,
(d) if i < j, wi ∈ R(Qi) and wj ∈ R(Qj), then <wi < <wj , and
(e) h0 ∈ R(Q0) .

Now let Q ∈ W . If Q ∩ γ is nonempty, then our construction guarantees that
Q ⊂ R(Qm) for some m and hence d(Q) ≤ d(Qm). Now consider the case that
Q ∩ γ = ∅; we prove that d(Q) can not be arbitrarily large compared to d(Qm):

(f) If Q ∈W intersects R(Qm), then d(Q) . d(Qm).
As in the proof of Theorem 2.7, let f : D → Ω be a conformal map which

maps (−1, 1) onto γ with <f(t) → β as t → 1. Let wm ∈ γ ∩ Qm and put
δm = δΩ(wm). By Lemma 2.3 there is a hyperbolic geodesic crosscut τm which is
almost orthogonal to γ at wm and satisfies Λ(τm) ≈ δm. Since τm is a crosscut, it
has endpoints ζ+

m, ζ
−
m ∈ ∂Ω; where ζ+

m corresponds (under the map f) to a point of
∂D with positive imaginary part. As before, we know that

Z+
m = {w : <w = <ζ+

m,=w ≥ =ζ+
m} and Z−

m = {w : <w = <ζ−m,=w ≤ =ζ−m}

are contained in the complement of Ω.
Suppose that d(Q) is very large compared to d(Qm). Since Q ∈ W there are

adjacent Whitney squares of comparable size on the left and right of Q which we
denote by Q− andQ+. Together, these squares project onto an interval I on the real
axis of size comparable to d(Q), with the point wm projecting to a point which is
approximately in the middle of this interval. Now consider the curve Z+

m∪τm∪Z−
m.

If d(Q) is sufficiently large, then this curve must project onto a subinterval of I.
Since Z+

m ∪Z−
m is contained in the complement of Ω, the only way this can happen

is for ζ+
m to be above the set Q− ∪ Q ∪ Q+ and for ζ−m to be below. But then

Λ(τm) & d(Q) which contradicts our assumption. This proves property (f).
Fix u ∈ C1(Ω) and assume that u vanishes on ∆0. Let’s denote R(Qj) by Rj .

Then by applying Lemma 3.3 to Rj we have∫
Rj

|u|p .
∫
Rj

|u− uQj
|p dm2 + |uQj

− uQ0 |pm2(Rj) + |uQ0 |pm2(Rj)

. bp
∫
Rj

|∇u|p + |uQj
− uQ0 |pm2(Rj) + |uQ0 |pm2(Rj).

Summing on j we see that∫
Ω

|u|p . bp
∫
Ω

|∇u|p + Σ2 + Σ3

where Σ3 = |uQ0 |pm2(Ω). Thus, we need to estimate these last two summands in
terms of the gradient integral.
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There is a Whitney square Q which contains h0. Since h0 ∈ R0 property (f)
yields that d(Q) . d(Q0) and hence ρ0 . d(Q0). Thus, there is a point h̃0 and a
disk ∆̃0 with the following properties: ∆̃0 ⊂ ∆0 ∩ R0 and m2(∆0) ≈ m2(∆̃0). By
Lemma 3.1, Lemma 3.3 and the remark following it, we deduce that

|uQ0 |pm2(R0) .
∫
R0

|u− uQ0 |p +
∫
R0

|u|p

. bp
∫
R0

|∇u|p +Np
p,∆0

(R0)
∫
R0

|∇u|p

.
(m2(R0)
m2(∆0)

)
bp
∫
R0

|∇u|p.

Thus,

Σ3 .
( m2(Ω)
m2(∆0)

)
bp
∫
R0

|∇u|p.

and we have now reduced the proof of the theorem to establishing the following
inequality:

(2) Σ2 =
∑

|uQj
− uQ0 |pm2(Rj) .

(
Vp,Ω(w0) + bp

m2(Ω)
m2(∆0)

) ∫
Ω

|∇u|p.

Fix a positive integer m and consider the geometry of the squares Qm and Qm+1.
Let Q′

m+1 denote a square in W which is adjacent and to the left of Qm+1. Since
Q′

m+1 has comparable size to Qm+1 and clearly intersects Rm by construction, we
see that d(Qm+1) . d(Qm) by property (f). We obtain a similar relationship for
Qm and hence d(Qm+1) ≈ d(Qm) for all m. Since wm ∈ Qm we have δm ≈ d(Qm).

Now, Ω is a b-strip and hence there is a rectangle, contained in Rm, with dimen-
sions comparable to δm × ηm connecting Qm to Q′

m+1; where ηm = |wm+1 − wm|.
Let Tm denote the union of this rectangle with Qm ∪ Q′

m+1. In order to apply
Lemma 3.2, we may view Tm as a chain of comparably sized Whitney cubes con-
necting Qm to Q′

m+1.
By Lemma 3.2 and Hölder’s inequality we see that for 1 < p <∞

|uQm
− uQ0 | ≤

m∑
j=1

|uQj
− uQj−1 | .

m∑
j=1

1
d(Qj)

∫
Qj∪Tj−1

|∇u|

.
m∑

j=0

1
d(Qj)

∫
Tj

|∇u| ≤
m∑

j=0

m2(Tj)
p−1

p d(Qj)−1
(∫
Tj

|∇u|p) 1
p .

Hence,

(3)
∞∑

m=0

|uQm
− uQ0 |pm2(Rm) .

∞∑
m=0

( m∑
j=0

aj

)p
bm
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where for m = 0, 1, . . . we have

am = m2(Tj)(p−1)/pd(Qj)−1
(∫
Tm

|∇u|p)1/p and bm = m2(Rm).

In order to apply Lemma 3.4 we define

(4) cm = m2(Tm)d(Qm)−p/(p−1) ≈ ηm

δ
1/(p−1)
m

and then from (3) we have (using the notation of the lemma)

∞∑
m=0

|uQm
− uQ0 |pm2(Rm) .

(
sup
m
Cp−1

m Bm

) ∞∑
m=0

∫
Tm

|∇u|p dm2.

Hence (2) will follow from the above and the proof will be complete if we can
obtain the appropriate bound for supCp−1

m Bm.
To do this we must examine the geometry of the quantities Cm and Bm. Of

course, the geometry of Bm is clear since

Bm =
∞∑

j=m

m2(Rj) = m2(Rm ∪Rm+1 ∪ · · · ).

It will be convenient for us to replace Bm by Bm+2. We claim that the theorem
will be proved once we establish that

(5) Cp−1
m Bm+2 . Vp,Ω(h0) + bp

m2(Ω)
m2(∆0)

holds for all m = 0, 1, . . . . This follows since bm ≤ bd(Qm) and hence

Cp−1
m Bm = (Cm−1 + cm)p−1(bm +Bm+1)

. Cp−1
m−1Bm + Cp−1

m Bm+1 + cp−1
m bm

. sup
n
Cp−1

n Bn+1 + bp.

Repeating this argument with Cp−1
m Bm+1 replacing the left hand side above gives

the desired reduction.
Small values of m are easy to handle in (5). Recall that Qm and Qm−1 have

comparable size and hence there is a λ > 1 satisfying d(Qm) ≥ d(Qm−1)/λ and
δm ≈ d(Qm). Hence

Cp−1
m ·Bm+2 .

( b

δ
1/(p−1)
0

+ · · · + b

δ
1/(p−1)
m

)p−1
m2(Ω)

.
(
1 + λ1/(p−1) + · · · + λm/(p−1)

)p−1 bp−1

δ0
m2(Ω)

. (m+ 1)p−1λm · bp m2(Ω)
m2(∆0)

.
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Thus, it suffices to prove (5) for m sufficiently large.
Next, we claim that there is an m0 depending only on the Whitney decomposition

so that

(6) Cm−1 .
∫

γ(w0,wm)

ds

δ
1/(p−1)
Ω

≈ kp(w0, τm)

whenever m ≥ m0.
To prove this recall that wm ∈ Qm ∩ γ and that we have constructed the hy-

perbolic geodesic τm and vertical rays Z+
m and Z−

m. Let γm = γ(wm−1, wm). Now
suppose that w ∈ γm. Then w belongs to the region bounded by the two curves
Z+

j ∪ τj ∪ Z−
j (j = m − 1, m). The proof of property (f) makes it clear that

δΩ(w) . δm. Since ηm = |wm+1 − wm| it follows that ηm ≤ Λ(γm+1) and hence,

Cm−1 ≈
m−1∑
j=0

ηj

δ
1/(p−1)
j

.
m∑

j=1

∫
γj

ds

δ
1/(p−1)
Ω

≤
∫

γ(w0,wm)

ds

δ
1/(p−1)
Ω

.

Since the hyperbolic diameter of any Whitney square is comparable to one, there
is an m0 = m0(W ) so that ρΩ(w0, wm) ≥ 1 holds for all m ≥ m0. Now (6) follows
from Lemma 2.6.

Let Lm = Ωxm
where xm = <wm.

Claim. For m ≥ m0 we have

(7) Cp−1
m−1Bm+1 . kp−1

p (w0, τm)m2(Ω(Lm)) . Vp,Ω(h0) + bp
m2(Ω)
m2(∆0)

.

The first relation follows immediately from (6). Let us observe that there is a
curve from h0 to w0 of length . b along which δΩ & ρ0. Hence, by definition

(8) kp−1
p (w0, h0) . bp−1/ρ0.

Now let w̃m be the point on γ(w0, wm) at which∫
γ(w0,w̃m)

ds

δ
1/(p−1)
Ω

=
∫

γ(w̃m,wm)

ds

δ
1/(p−1)
Ω

and let τ̃m be a hyperbolic geodesic crosscut through w̃m which is nearly orthogonal
to γ and has length comparable to δΩ(w̃m). By modifying m0, if necessary, we
assume that ρΩ(w0, w̃m) ≥ 1 so that

kp(w0, τ̃m) ≈
∫

γ(w0,w̃m)

ds

δ
1/(p−1)
Ω

.

Case 1. τ̃m ∩ Lm = ∅:
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We show that this implies that Ω(Lm) ⊂ Ω(τ̃m). Suppose to the contrary that
w̃m ∈ Ω(Lm). Then there is a Jordan region contained in Ω and bounded by a
subarc of γ containing w̃m and a subarc of Lm. By the Jordan curve theorem it
follows that τ̃m, which clearly contains a point in the interior of this Jordan region
by construction, must intersect the boundary of this region at a point other than
w̃m. Since this point must be in Lm we have a contradiction to our hypothesis. This
proves that Ω(Lm) ⊂ Ω(τ̃m) and hence that kp(w0, Lm) ≥ kp(w0, τ̃m). It follows
from this, the triangle inequality for kp and (8) that

kp−1
p (w0, τm)m2(Ω(Lm)) . kp−1

p (w0, Lm)m2(Ω(Lm))

.
(
kp(h0, Lm) +

b

ρ
1/(p−1)
0

)p−1
m2(Ω(Lm))

. kp−1
p (h0, Lm)m2(Ω(Lm)) + bp

m2(Ω)
m2(∆0)

;

which implies (7).

Case 2. τ̃m ∩ Lm is nonempty:

As argued earlier in the proof of Theorem 2.7, this means there is a point w?
m ∈

γ(w̃m, wm) with the property that kp(w0, w
?
m) . bδΩ(w?

m)−1/(p−1). Let τ?
m be a

hyperbolic geodesic which is nearly orthogonal to γ at w?
m with length comparable

to δΩ(w?
m). If τ?

m ∩ Lm = ∅ then (7) follows as in case 1. Otherwise, there is
a vertical crosscut L?

m with the property that Ω(L?
m) ⊂ Ω(τ?

m) and that the set
Ω(Lm) \ Ω(L?

m) is contained in a vertical strip of width comparable to δΩ(w?
m).

Hence,

kp−1
p (w0, τm)m2(Ω(Lm)) . kp−1

p (w0, τ
?
m)
(
m2(Ω(L?

m)) + bδΩ(w?
m)
)

. kp−1
p (w0, L

?
m)m2(Ω(L?

m)) + bp

and (7) follows as before.
The proof of the theorem is now complete. �

4. The necessity of the Kp,Ω Condition

In this section we prove Theorem B in the introduction. For a given hyper-
bolic geodesic we need only construct an appropriate function in the Sobolev space
W 1,p(Ω) and apply the Poincaré inequality. We first give a simplified treatment of
this construction.

Fix a point w0 ∈ Ω and a hyperbolic geodesic τ which does not contain w0.
Put δ0 = δΩ(w0). Let γ be the hyperbolic geodesic in Ω which contains w0 and
is orthogonal to τ and let wτ ∈ τ be the point where these curves intersect. Our
strategy is to decompose Ω in a manner similar to the decomposition in Lemma 2.6.
We assume that n is a positive integer satisfying 2n + 1 < ρΩ(w0, wτ ) ≤ 2n +
3. We denote by w1, . . . , w2n the points on γ(w0, wτ ) determined by the relation
ρΩ(w0, wm) = m and we put δm = δΩ(wm). As before, we let τm be a hyperbolic
geodesic which is nearly orthogonal to γ at wm and has length comparable to δm.
By Lemma 2.3, the τm’s are disjoint and Ω(τ) ⊂ Ω(τ2n).
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Define a function u0 on γ by setting u0(w) = 0 if w precedes w1, for w ∈
γ(w1, w2n) we take

u0(w) =
∫

γ(w1,w)

ds

δ
1/(p−1)
Ω

and finally, u0(w) = u0(w2n) for all w ∈ γ ∩ Ω(τ2n). It is elementary that u0 is
continuously defined on γ.

Let Rm denote the simply connected subset of Ω between the crosscuts τm and
τm−1. As before let γm = γ(wm−1, wm). Suppose that there exists a function u
defined on Ω which satisfies the following properties

(a) u ∈ W 1,p(Ω) ∩ C(Ω),
(b) u is constant on Ω(τ2n) and hence on Ω(τ), with u ≈ kp(w0, τ),
(c) u is zero on the component of Ω \ τ1 containing w0 and
(d) For m = 2, . . . , 2n, we have∫

Rm

|∇u|p .
∫

γm

ds

δ
1/(p−1)
Ω

.

Remark. We note that the function u above is relevant to Maz’ja’s capacitary theory
of p-Poincaré domains. It would essentially determine the capacity of the condenser
pair (Ω \Ω(τ1),Ω(τ2n)), which is an integral part of his characterization. See §4 in
[Maz85].

Theorem 4.1. Suppose that Ω is a p-Poincaré domain and w0 ∈ Ω. If for every
hyperbolic geodesic τ with ρΩ(w0, τ) ≥ 3 there exists a function u defined on Ω
satisfying the above properties, then

(1) Kp,Ω(w0) . m2(Ω)
δ20

Mp
p (Ω).

Proof. Fix a smooth function φ which is zero for |z| ≥ 1, equals one for |z| ≤ 1/2
and satisfies 0 ≤ φ ≤ 1. Let ρ0 = δΩ(w0)/2 and put ∆0 = D(w0, ρ0) ⊂ Ω. Define
v to be a bump function for ∆0; i.e., let v(w) = φ((w−w0)/ρ0). Since 0 ≤ vΩ ≤ 1,
we see that |v − vΩ| ≥ 1/2 on a set of area & δ20 . Hence,

m2(∆0) .
∫
Ω

|v − vΩ|p ≤Mp
p (Ω)

∫
Ω

|∇v|p . Mp
p (Ω)δ2−p

0

and it follows that

(2) δΩ(w0) . Mp(Ω)

for all w0 ∈ Ω.
Suppose first that ρΩ(w0, wτ ) ≤ 3. By Lemma 2.2, we have

Λ(γ(w0, wτ )) . δ0 and δΩ(w) & δ0,
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for all w ∈ γ(w0, wτ ). Hence by Lemma 2.6 and (2) we have

kp−1
p (w0, τ) ·m2(Ω(τ)) .

 ∫
γ(w0,wτ )

ds

δ
1/(p−1)
Ω


p−1

m2(Ω)

. δp−2
0 m2(Ω) . m2(Ω)

δ20
Mp

p (Ω).

which proves (1) in this case. Hence, it suffices to assume that the hyperbolic
distance between w0 and τ is at least 3.

Now assume that τ is a hyperbolic geodesic with 2n+3 ≥ ρΩ(w0, τ) > 2n+1 ≥ 3
and that u satisfies the properties described above. We may need to modify the
definition of ρ0 slightly so that ∆0 ∩ τ1 = ∅. By Lemma 2.2 this can be done with
ρ0 ≈ δ0. Since ρΩ(w0, wτ ) ≤ 2n+3 it follows from Lemma 2.2 and Lemma 2.6 that

(3) kp(w0, τ) ≈ kp(w0, w2n) ≈ kp(w1, w2n) ≈
∫

γ(w1,w2n)

ds

δ
1/(p−1)
Ω

.

By property (a) the Poincaré inequality holds for the function u. Since u = 0
on ∆0 we use the corresponding inequality with Np,Ω(∆0) in place of Mp(Ω) and
apply Lemma 3.1. Combining this with property (b) and (3) we get

kp
p(w0, τ) ·m2(Ω(τ)) ≈

∫
Ω(τ)

|u|p

≤
∫
Ω

|u|p ≤ Np
p,Ω(∆0)

∫
Ω

|∇u|p

. m2(Ω)
m2(∆0)

Mp
p (Ω)

∫
Ω

|∇u|p

and on the other hand properties (b), (c) and (d) yield that

∫
Ω

|∇u|p =
2n∑

m=2

∫
Rm

|∇u|p

.
2n∑

m=2

∫
γm

ds

δ
1/(p−1)
Ω

=
∫

γ(w1,w2n)

ds

δ
1/(p−1)
Ω

≈ kp(w0, τ).

Combining these inequalities gives

kp−1
p (w0, τ) ·m2(Ω(τ)) . m2(Ω)

δ20
Mp

p (Ω)

which proves the theorem. �
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We have now reduced the proof of Theorem B to the construction of a certain
continuous function on Rm with an estimate on the integral of its gradient. Of
course, we must also show that these functions combine to form a Sobolev function
on Ω but this will involve a standard result in the theory of these functions. The
curve γ divides Rm into two pieces which we denote by R+

m for the top half; which
is the image of points with positive imaginary parts under a conformal mapping
of D, and R−

m for the bottom half. We only describe the construction of u on R+
m

since the other construction is similar.
Observe that ∂R+

m∩Ω consists of three curves; namely, τ+
m−1, γm and τ+

m and also
observe that at the two “vertices” wm−1, wm these curves meet at nearly a right
angle. The basic idea of the construction is to prove that there is a bilipschitzian
change of variables on C (with bounds on the distortion which are independent of
m) which maps these three curves onto three sides of a square of side length δm.
Once this is done, a function will be defined on this square and transferred back to
R+

m by means of this change of variables.
We already know that the lengths of these three curves are all comparable to

δm by construction and that consecutive curves are nearly orthogonal as observed
above. We have two problems to deal with: one is to control the smoothness of the
curves (especially near ∂Ω) and the other is that the endpoints ζ+

m−1, ζ
+
m of τ+

m−1,
τ+
m may be very close together in the Euclidean metric.

We need to modify the curves τ+
m−1, τ

+
m near ∂Ω. Fix a small positive number

η < 1/2. We will reduce the value of η at various points in the proof. There is a
first point a+

m on the curve τ+
m, starting from wm, at which δΩ(a+

m) = ηδm. Since
|ζ+

m − wm| ≥ δm, a+
m 6= wm. Let b+m ∈ ∂Ω be any boundary point which satisfies

|a+
m − b+m| = ηδm and denote by [a+

m, b
+
m] the line segment with these endpoints.

Now denote by σ+
m the curve τ+

m(wm, a
+
m) followed by [a+

m, b
+
m]. Since b+m ∈ ∂Ω we

obtain a new crosscut σm through wm by combining σ+
m and σ−

m.

Lemma 4.2. Let σ be a hyperbolic geodesic arc of Ω with endpoints w, w′ ∈ Ω. If
ρΩ(w,w′) ≤ β, then

Λ(σ) ≤ 4e3β |w − w′|.

Proof. There is a conformal mapping f of D onto Ω which maps the origin to w
and a point r with 0 < r < 1 onto w′. Since σ is a hyperbolic geodesic, the line
segment [0, r] is mapped onto the arc σ. Since

log
1 + r

1 − r
= ρD(0, r) = ρΩ(w,w′) ≤ β

it follows from the distortion theorem (see Theorem 1.3, Corollary 1.4 in [Pom92])
that

|w − w′| ≥ r

4
|f ′(0)| and |f ′(t)| ≤ |f ′(0)|e3β

for all t satisfying 0 ≤ t ≤ r. Hence

Λ(σ) =
∫ r

0

|f ′(t)| dt ≤ re3β|f ′(0)| ≤ 4e3β |w − w′|

which proves the lemma. �
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Lemma 4.3. There is a constant cη depending only on η such that for all m =
1, . . . , 2n we have

(4) Λ(σ+
m(w,w′)) ≤ cη|w − w′|

for all w,w′ ∈ σ+
m .

Proof. Let us estimate ρΩ(wm, a
+
m) using the quasi-hyperbolic metric k2:

k2(wm, a
+
m) ≤

∫
τ+

m(wm,a+
m)

ds

δΩ
≤ Λ(τm)

ηδm
. 1
η

and thus ρΩ(wm, a
+
m) . η−1. Applying Lemma 4.2 we see that (4) holds provided

w,w′ ∈ τ+
m.

Of course, if w,w′ ∈ [a+
m, b

+
m] then (4) is trivially true with constant 1. Finally,

suppose that w ∈ τ+
m(wm, a

+
m) and that w′ ∈ [a+

m, b
+
m]. Observe that the defini-

tions of a+
m and b+m imply that τ+

m(wm, a
+
m) is disjoint from the disk D(b+m, ηδm).

It follows from this that |w − w′| ≥ |a+
m − w′| and the rest of the argument is

straightforward. �
Now consider the disk D+

m = D(a+
m, ηδm). Our construction satisfies the hy-

pothesis of Lemma 2.5 and hence: if σ is any curve in Ω with endpoints a+
m−1 and

a+
m then Λ(σ) & δm−1. Suppose D+

m−1 ∩D+
m is nonempty. Then the line segment

[a+
m−1, a

+
m] ⊂ Ω and the above implies that its length is & δm−1. On the other

hand, its length is less than η(δm−1 + δm). Since δm−1 ≈ δm it follows that η can
be chosen so that

(5) D+
i ∩D+

j = ∅ whenever i 6= j.

Lemma 4.4. There exists ε > 0 with the following property: If {Di} is a disjoint
collection of three open disks of radius r and if {zi} are points in ∂Di, where
1 ≤ i ≤ 3, then there is a point zi satisfying

|z1 − zi| > εr .

Proof. An elementary geometric argument yields this result.

Corollary 4.5. There is an ε > 0 with the following property: Given i with 2(k−
1) < i ≤ 2k, there is a j with 2k < j ≤ 2(k + 1) satisfying

D(b+i , εηδi) ∩D(b+j , εηδj) = ∅.

Proof. Since the number δ2(k−1), . . . , δ2(k+1) are comparable the proof is immediate
from Lemma 4.4. �

We are now in a position to modify our decomposition of Ω. By Corollary 4.5,
we can fix ε and chose exactly n of the original crosscuts σm, which we shall relabel
as σ1, . . . , σn, along with the corresponding wm’s, a+

m’s, etc., so that the following
three properties are fulfilled:

(a) 1 ≤ ρΩ(wm−1, wm) < 4 for all m = 1, . . . , n,
(b) D(b+m−1, εηδm−1) ∩D(b+m, εηδm) = ∅ for m = 2, . . . , n and
(c) D+

m−1 ∩D+
m = ∅.
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Continuing, we denote the region in Ω between σm−1 and σm as Rm and suppose
that there exists a function u defined on Ω which satisfies the following properties

(d) u ∈ W 1,p(Ω) ∩ C(Ω),
(e) u is constant on Ω(τ) with u ≈ kp(w0, τ),
(f) u is zero on the component of Ω \ σ1 containing w0 and
(g) for m = 2, . . . , n, we have∫

Rm

|∇u|p .
∫

γm

ds

δ
1/(p−1)
Ω

.

It follows that Theorem 4.1 is valid with this decomposition, and hence we have
reduced the proof of Theorem B to proving that this modified function u exists.

Fix m with 2 ≤ m ≤ n. We now construct the bilipschitzian square needed for
our definition of u. Recall from the proof of Lemma 4.3 that the regionD(a+

m, ηδm)∩
D(b+m, ηδm) is contained in Ω and is disjoint from τ+

m(wm, a
+
m). Since the line

segment [a+
m, b

+
m] divides this region into two parts and since σm is a crosscut it

follows that there is a point r+m satisfying
(h) r+m ∈ Rm+1 ∩D(a+

m, ηδm) ∩D(b+m, ηδm),
(i) |r+m − b+m| = 1

2ηδm and
(j) the angle between [b+m, a

+
m] and [b+m, r

+
m] is π/4.

Analogously there is a point l+m satisfying
(h’) l+m ∈ Rm−1 ∩D(a+

m−1, ηδm−1) ∩D(b+m−1, ηδm−1),
(i’) |r+m−1 − b+m−1| = 1

2ηδm−1 and
(j’) the angle between [b+m−1, a

+
m−1] and [b+m−1, r

+
m−1] is π/4.

Notice that the index refers to the region Rm and not to the crosscuts and in fact
the notation is a reminder that for a fixed m, l+m is to the left of Rm and r+m is to
the right.

Let us now define the curve µ+
m to be the curve that starts at l+m, goes straight

to b+m−1, follows σ+
m−1 to wm−1, follows γm to wm, follows σ+

m to b+m and ends by
going straight to r+m.

Lemma 4.6. There is an η > 0 and a constant cη depending only on η such that
for all m = 2, . . . , n we have

(6) Λ(µ+
m(w,w′)) ≤ cη|w − w′|

for all w,w′ ∈ µ+
m.

Proof. The proof is similar to the proof of Lemma 4.3. The curve µ+
m consists of

five simpler curves for which (6) is either trivially valid or follows from Lemma 4.3.
Thus, we must consider several cases where w is in one of these curves and w′ is in
another.

To simplify matters we first prove that unless the two curve segments are adjacent
to each other (as components of µm) then the Euclidean distance between them is
& εηδm. This will reduce the proof to examining adjacent curves since Λ(µ+

m) ≈ δm
and ε is fixed. By properties (b) and (c) we see that the Euclidean distance between
any two nonadjacent linear segments is & εηδm, since δm−1 ≈ δm.
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By Lemma 2.5 we may assume, after possibly reducing the value of η, that the
Euclidean distance between σm−1 and σm is least ηδm. Hence we are left with
proving that γm is not too close to the straight-line segments. It will suffice to
show that γm is disjoint from D+

m−1 ∪D+
m. But we can obviously adjust the value

of η so that this is the case since δΩ(w) ≈ δm for all w ∈ γm and each disk Dm

has a point on its boundary which is in the complement of Ω. Thus, the Euclidean
distance between nonadjacent curves is not too small, relative to δm.

Finally, we examine the interaction between adjacent curve segments. The ad-
jacent linear segments are not a problem since the angle between them is π/4.
Suppose now that w ∈ τ+

m−1(wm−1, a
+
m−1) and w′ ∈ γm. Let f be the conformal

map of D onto Ω which maps (−1, 1) onto γ which maps the origin to wm−1 and
satisfies 0 < f−1(wm) < 1. By our construction, there is a point z′ > 0 for which
[0, z′] maps onto γ(wm−1, w

′). Let z ∈ D map onto w. By our construction, the
diameter L of D through z maps onto τm−1 and hence is nearly orthogonal to the
real axis.

If |w − w′| ≥ ηδm−1, then it is immediate that (6) holds because the curve has
length comparable to δm−1. On the other hand, if |w − w′| < ηδm−1, then clearly
for sufficiently small η we have

ρΩ(w,w′) ≈ k2(w,w′) ≈ |w − w′|
δΩ(w′)

≤ ηδm−1

δΩ(w′)
.

Hence we may assume that η has been chosen so that ρΩ(w,w′) < 1. But now
|w − w′| ≈ |z − z′|δm−1 and the proof of (6) follows from the distortion theorem
and the fact that L is nearly orthogonal to the real axis. �

We now fix the value of η so that (6) holds. Our decomposition is complete and
we next prove that our curves µm are bilipschitzianly equivalent to a segment of
length δm, which is in turn equivalent to three sides of a square of side δm.

Lemma 4.7. There is an absolute constant α > 0 so that for each m, 2 ≤ m ≤
n, there is a bilipschitzian homeomorphism Tm, of the entire plane C, with the
following properties

(i) α−1|z1 − z2| ≤ |Tm(z1) − Tm(z2)| ≤ α|z1 − z2| for all z1, z2 in C,
(ii) Tm(µ+

m) is contained in the boundary of the square

Sm = {(s, t) : 0 ≤ s ≤ δm, 0 ≤ t ≤ δm}

and lastly,
(iii) Tm(l+m) = (0, δm), Tm(b+m) = (0, δm/2), Tm(wm−1) = (0, 0), Tm(wm) =

(δm, 0), Tm(b+m) = (δm, δm/2) and Tm(r+m) = (δm, δm).

Proof. Let ψm : [0,Λ(µm)] → µm be the arc length parametrization of µm. By (6)
there is an absolute constant α0 > 0 such that |s2 − s1| ≤ α0|ψm(s2) − ψm(s1)|
and trivially |ψm(s2) − ψm(s1)| ≤ |s2 − s1|. Hence ψm is a Lipschitz embedding of
the interval [0,Λ(µm)] onto µm. Since Λ(µm) ≈ δm we might as well assume that
ψm : [0, δm] → µm is a Lipschitz embedding satisfying

α−1
1 |s2 − s1| ≤ |ψm(s2) − ψm(s1)| ≤ α1|s2 − s1|
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for some absolute constant α1.
By Theorem B in [Tuk80] (see also [Tuk81], [JeKe] and Chapter 7.4 in [Pom92]),

there is a homeomorphism Ψm of C whose restriction to the interval [0, δm] is ψm

and which satisfies

α−1
2 |z2 − z1| ≤ |Ψm(z2) − Ψm(z1)| ≤ α2|z2 − z1|

for all z1, z2 ∈ C.
On the other hand, there is obviously a bilipschitz embedding φm of the interval

[0, δm] onto the three sides of the square Sm with constant α3. Using the above
extension theorem again we get a bilipschitz homeomorphism Φm of C extending
φm.

Put Tm = Φm◦Ψ−1
m . Clearly, Tm satisfies properties (i) and (ii). In order to show

that property (iii) can also be satisfied, we need only construct a bilipschitz embed-
ding of the interval [0, δm] onto itself which maps Ψ−1

m (b+m−1) onto Φ−1
m (0, δm/2),

Ψ−1
m (wm−1) onto Φ−1

m (0, 0), . . . . But this can clearly be done with a piecewise linear
function with an absolute bound on the Lipschitz constant, since all the component
curves of µ+

m have length comparable to δm. �
We now define our function u which is to satisfy properties (d)-(g). First define

vm(s, t) on Sm by

vm(s, t) = (1 − s

δm
)u0(wm−1) +

s

δm
u0(wm)

whenever, 0 ≤ s ≤ δm and 0 ≤ t ≤ δm

2 , and

vm(s, t) = (2 − 2t
δm

)vm(s,
δm
2

) + (
2t
δm

− 1)
u0(wm−1) + u0(wm)

2

when 0 ≤ s ≤ δm and δm/2 ≤ t ≤ δm . Observe that vm(s, δm) is independent of s
and equals the average value (u0(wm−1) + u0(m))/2. By the definition of u0 and
our construction we see that

u0(wm) − u0(wm−1) =
∫

γm

ds

δ
1/(p−1)
Ω

≈ δm

δ
1/(p−1)
m

and an elementary computation then shows that

(7)
∫

Sm

|∇vm|p ≈ (u0(wm) − u0(wm−1)
δm

)p
δ2m ≈ δm

δ
1/(p−1)
m

≈
∫

γm

ds

δ
1/(p−1)
Ω

.

Now we define u(w) = vm(Tm(w)) provided w ∈ T−1
m (Sm) ∩ R+

m and u(w) =
(u0(wm−1) + u0(m))/2 whenever w ∈ R+

m \ T−1
m (Sm). We make the analogous

definitions for points in R−
m and of course we set u = u0(wn) on Ω(σn) and u = 0

on the component of Ω \ σ1 containing w0. It is easy to see that u is well defined
and continuous on Ω and satisfies properties (e) and (f).
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To simplify the discussion of properties (d) and (g) let us assume that the bilip-
schitzian homeomorphisms Tm are continuously differentiable. Then, property (i)
of Lemma 4.7 would imply that the transformation Tm is approximately an isom-
etry. Thus, the Jacobian JTm

≈ 1 and by the chain rule |∇u(w)| ≈ |∇vm(Tm(w))|
whenever w ∈ Rm ∩ T−1

m (Sm) and =Tm(w) 6= δm/2. Hence the change of variables
formula and (7) imply that

∫
Rm

|∇u|p =
∫

Rm∩T−1
m (Sm)

|∇u|p ≈
∫

Rm∩T−1
m (Sm)

|(∇vm) ◦ Tm|pJTm

=
∫

Tm(Rm)∩Sm

|∇vm|p .
∫

γm

ds

δ
1/(p−1)
Ω

which yields property (g). To prove that u is a Sobolev function we first observe
that it is piecewise differentiable. Secondly, u is a local Lipschitz function on Ω and
hence it is absolutely continuous on any line segment contained in Ω. It follows
from a well-known theorem in Sobolev space theory, see Theorem 2.1.4 in [Zie],
that u has weak derivatives on Ω which agree with its classical derivative at almost
all points of Ω. Thus, property (d) is fulfilled and we are done in this case.

To complete the proof in general we need to show that bilipschitzian transfor-
mations have classical derivatives almost everywhere and that the chain rule and
change of variable formula are all valid. But these facts are well-known; see for
example Chapter 2.2 [Zie]. This proves Theorem B in the following form:

Theorem 4.8. If Ω is a simply connected domain with finite area, then

Kp,Ω(w0) . m2(Ω)
δΩ(w0)2

Mp
p (Ω).

Theorem 4.8 can be used to produce additional useful lower bounds for Mp(Ω).
We illustrate this with the following corollary and example. Given disjoint hyper-
bolic geodesics τ1 and τ2 in Ω, for j = 1, 2 we denote by Ωj(τ1, τ2) the component
of Ω \ τj that is disjoint from τ1 ∪ τ2 and denote by Aj its area.

Corollary 4.9. Suppose τ1 and τ2 are disjoint hyperbolic geodesics in a simply
connected domain Ω of finite area. Then, for 1 < p <∞,

max δ2Ω
m2(Ω)

kp−1
p (τ1, τ2) min{A1, A2} . Mp

p (Ω) .

Proof. Let w0 ∈ Ω be such that δΩ(w0) ≥ max δΩ/2 and suppose without loss
of generality that kp(w0, τ1) ≥ kp(w0, τ2). Then kp(w0, τ1) ≥ kp(τ1, τ2)/2, by the
triangle inequality. If w0 ∈ Ω1(τ1, τ2), then τ1 would separate w0 from τ2, and so it
would follow that kp(w0, τ1) < kp(w0, τ2) in contradiction to our assumption. Thus
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w0 /∈ Ω1(τ1, τ2), and so Ω(τ1) = Ω1(τ1, τ2). Hence, by Theorem 4.8 and the above,

Mp
p (Ω) & δΩ(w0)2

m2(Ω)
Kp,Ω(w0)

≥ max δ2Ω
4m2(Ω)

kp−1
p (w0, τ1)m2(Ω(τ1))

≥ max δ2Ω
4m2(Ω)

kp−1
p (τ1, τ2)

2p−1
m2(Ω1(τ1, τ2)) ,

which completes the proof.

Example 4.10. Let a and b be positive numbers with b/a large, and suppose Ω is
a simply connected p-Poincaré domain containing the rectangle R = (0, b)× (0, a),
and such that [0, b] × {0, a} ⊂ ∂Ω. Then, for 1 < p <∞,

(8) bp . m2(Ω)
max δ2Ω

Mp
p (Ω)

and hence Ω can not contain arbitrarily long “rectangular passages”.
To see this, let L1 and L2 be the vertical crosscuts of R corresponding to x = b/3

and x = 2b/3. These determine hyperbolic geodesics τ1 and τ2 using the prime ends
of the Lj ’s. By the Gehring-Hayman theorem the lengths of these geodesics are
comparable to a. If b/a is sufficiently large, then the Euclidean distance from τ1 to τ2
is comparable to b. Thus kp−1

p (τ1, τ2) & bp−1/a. Alsom2(Ωj(τ1, τ2)) & m2(R) = ab,
j = 1, 2 and so the desired inequality is an immediate consequence of Corollary 4.9.

5. Steiner Symmetrization

Pólya proved in 1948 [Pól] that the smallest positive eigenvalue for Laplace’s op-
erator, with Dirichlet boundary conditions, on a fixed domain Ω, will never decrease
under Steiner symmetrization. This section is motivated by the corresponding ques-
tion for Neumann boundary conditions. Indeed, M2

2 (Ω) equals the reciprocal of the
smallest positive eigenvalue for the Neumann problem on Ω. See [DeLi], [Maz68],
§4.10 in [Maz85] and §4 of [Sta] for more on this connection. Hence, Pólya’s result
suggests that Mp(Ω?) ≤ Mp(Ω). We shall see in Example 5.2 that this is false.
There exists, for each p > 1, a p-Poincaré domain Ω for which Mp(Ω?) = ∞.
Thus, there exist domains for which the Neumann problem has a smallest positive
eigenvalue whereas the corresponding problem on the Steiner symmetrized domain
has arbitrarily small positive eigenvalues. Theorem 5.1 shows, however, that for b-
strips Steiner symmetrization has a controlled effect on Mp. For more information
on symmetrizations and eigenvalue problems in the theory of partial differential
equations we cite [Bae], [Kaw], and the classical reference [PóSz] which contain
many more references.

In this section we prove Theorem C in the following form.

Theorem 5.1. Suppose that Ω is a b-strip with Mp(Ω) <∞ and let w0 ∈ Ω. Then

Mp
p (Ω?) . m2(Ω)

δΩ(w0)2
(
Mp

p (Ω) + bp
)
.
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Proof. Fix w0 ∈ Ω. For w ∈ Ω, let π1(w) be the projection of w onto the real axis.
Now it is geometrically obvious that

(1) δΩ(w) ≤ δΩ?(π1(w)) (w ∈ Ω)

because a disk centered on the real axis is a Steiner symmetric domain. Let γ be
an arc in Ω from w0 to w1. Denote by x0, x1 their real parts and let [x0, x1] be the
line segment in Ω? with these endpoints. Assume for convenience that x0 < x1. By
(1) we clearly have∫ x1

x0

dx

δΩ?(x)1/(p−1)
≤
∫
γ

|dw|
δΩ?(π1(w))1/(p−1)

≤
∫
γ

ds

δ
1/(p−1)
Ω

and hence kp,Ω?(x0, x1) ≤ kp,Ω(w0, w1). It follows that

(2) Vp,Ω?(x0) ≤ Vp,Ω(w0)

because if Lx is the vertical crosscut of Ω corresponding to the real number x 6= x0,
then m2(Ω(Lx)) = m2(Ω?(L?

x)).
Let ∆?

0 be the disk in Ω? which is centered at x0 and has radius δΩ?(x0)/2. Since
Ω? is also a b-strip we can apply Theorem 3.5 along with Lemma 3.1 and (2) to
deduce that

(3)
Mp

p (Ω?) . Np
p,Ω?(∆?

0) . Vp,Ω?(x0) + bp
m2(Ω?)
δΩ?(x0)2

. Vp,Ω(w0) + bp
m2(Ω)
δΩ(w0)2

.

On the other hand, Theorem 2.7 and Theorem 4.8 yield

Vp,Ω(w0) . Kp,Ω(w0) + bp . m2(Ω)
δΩ(w0)2

Mp
p (Ω) + bp.

Finally, (3) and the above combine to prove the theorem. �
Example 5.2. Given p > 1, we construct a bounded simply connected p-Poincaré
domain Ω whose Steiner symmetrization Ω? is not a p-Poincaré domain.

Case 1. 1 < p < 2:

The domain Ω will be obtained by stacking together infinitely many rescaled
versions of the domains Ω(n, a), with n = 1, 2, . . . and 0 < a < 1/n, which is
illustrated (along with its Steiner symmetrization) in Figure 1.

Each Ω(n, a) consists of a left square room and n right narrow rectangular rooms
each joined to the left room by a passage of height a, except for the lowest right
room which opens fully to the left room and has height a. The domain Ω is obtained
as follows: Start off with a domain Ω(n1, a1). Next, adjacent to the lowest right
room of Ω(n1, a1), we adjoin a rescaling of Ω(n2, a2) by removing the left boundary
of this rescaled domain along with the right boundary of the lower right room of
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Ω(n1, a1). The rescaled version of Ω(n2, a2) will have dimensions 1 × a1. In the
same fashion, we now adjoin to the lowest right room a rescaling of Ω(n3, a3) with
dimensions 1/2×a1a2. Continuing this process indefinitely will produce a bounded
domain Ω which depends on the sequences {ai} and {ni}. We now proceed to
show that these sequences can be chosen in such a way that Mp(Ω) < ∞ while
Mp(Ω?) = ∞.

Ω

★Ω

              na 

1/n

1/n

1/n
a

1

1 1

1/n

a

(n,a)

(n,a)

Figure 1. The domain Ω(n, a) and its Steiner symmetrization.

We first deal with Ω. We decompose Ω into its intersections with the horizontal
strips determined by the partition of the vertical axis by the ordinates of the upper
and lower boundaries of all the right rooms obtained from the rescaled Ω(ni, ai)
which comprise Ω. We write

Ω =
∞⋃

i=1

ni−1⋃
j=1

Ωi,j ,

where for a given index i, the domains Ωi,j (1 ≤ j < ni) correspond to the upper
ni−1 right rooms of the rescaled Ω(ni, ai) part of Ω, taken in any order.



28 WAYNE SMITH, ALEXANDER STANOYEVITCH AND DAVID A. STEGENGA

Let ∆i,j denote the disk in Ωi,j with diameter equaling the height of Ωi,j and cen-
tered at the point hi,j with abscissa x = 1/2 (we introduce the usual xy-coordinate
system with origin located at the lower left corner of Ω). We let Q0 denote the left
most room of Ω, i.e., Q0 = (0, 1)×(0, 1). Now consider a function u ∈W 1,p(Ω) with∫

Q0
u = 0. Choose a smooth “bump function” which satisfies: 0 ≤ φ(x) ≤ 1, φ = 1

on [1/3, 2/3] and φ = 0 off [0, 1]. Write u = u1 + u2 where u1(x, y) = φ(x)u(x, y).
Since u1 vanishes off Q0 and on Q0 it is dominated in absolute value by |u|, we

have ∫
Ω

|u1|p ≤
∫
Q0

|u|p ≤Mp
p (Q0)

∫
Q0

|∇u|p .
∫
Q0

|∇u|p.

Now consider u2. Since this function vanishes for 1/3 ≤ x ≤ 2/3 and hence on each
∆i,j , we have ∫

Ω

|u2|p =
∑ ∫

Ωi,j

|u2|p

≤
∑

Np
p,Ωi,j

(∆i,j)
∫

Ωi,j

|∇u2|p

≤
(
supNp

p,Ωi,j
(∆i,j))

)∫
Ω

|∇u2|p.

Also, using the normalization
∫

Q0

u = 0 and the properties of φ, we obtain:

∫
Ω

|∇u2|p .
∫
Ω

(1 − φ)p|∇u|p +
∫
Ω

|u|p|φ′|p

.
∫
Ω

|∇u|p +
∫
Q0

|u|p

≤ (1 +Mp
p (Q0))

∫
Ω

|∇u|p .
∫
Ω

|∇u|p.

Combining these inequalities we obtain, for arbitrary u ∈ W 1,p(Ω),∫
Ω

|u− uΩ|p .
∫
Ω

|u− uQ0 |p . supNp
p,Ωi,j

(∆i,j)
∫
Ω

|∇u|p

and hence that Mp(Ω) . supNp,Ωi,j
(∆i,j).

Since each Ωi,j is a b-strip with b = Ai, where Ai = a1 · · ·ai−1 ≤ 1, from
Theorem 3.5 we may conclude that

Np
p,Ωi,j

(∆i,j) . Vp,Ωi,j
(hi,j) +Ap

i

4Ai

A2
i

. Vp,Ωi,j
(hi,j) + 1.
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Now the domain Ωi,j is a rectangle of approximate size 4×Ai with a narrow gap
of size Ai+1 located 1/2i−1 units to the left of its right-hand boundary. In order to
estimate Vp,Ωi,j

(hi,j), it is easily seen that it suffices to consider only the vertical
crosscuts Lxi

with abscissa xi corresponding to this narrow gap. Estimation with
the horizontal segment from hi,j to Lxi

gives

(4) kp−1
p,Ωi,j

(hi,j , Lxi
) .

(
4

A
1/(p−1)
i

+
∫ ∞

Ai+1

dt

t1/(p−1)

)p−1

. 1
Ai

+
1

A2−p
i+1

.

In addition, m2(Ωi,j(Lxi
)) = Ai/2i−1 and hence

Vp,Ωi,j
(hi,j) . kp−1

p,Ωi,j
(hi,j , Lxi

) ·m2(Ωi,j(Lxi
))

. 1
2i−1

+
Ai

A2−p
i+1 2i−1

. 1

provided

(5) Ai = A2−p
i+1 2i−1 or ai+1 =

A
(p−1)/(2−p)
i

2(i−1)/(2−p)
.

We now pass to Ω? and let Li be the vertical crosscut of Ω? with abscissa xi.
Near x = xi, Ω? is a rectangle of approximate dimensions 2/2i−1 × niAi with a
narrow gap of size niAi+1 at x = xi. Assuming (5), we clearly obtain

kp−1
p,Ω?((1/2, 0), Li) ·m2(Ω?(Li)) &

(∫ niAi

niAi+1

dt

t1/(p−1)

)p−1

· niAi

2i−1

& 1
(niAi+1)2−p

· niAi

2i−1
= np−1

i

and hence Vp,Ω? = ∞ provided {ni} is unbounded. But it is straightforward that
there exists such a sequence with {aj} satisfying (5). Thus, Mp(Ω?) = ∞ by
Theorem A and the case 1 < p < 2 is complete.

Case 2. p = 2:

The construction is the same as case 1 except (5) will involve logarithms.

Case 3. p > 2:

There is a fundamental change in the kp-metric in this case because t−1/(p−1)

is integrable near the origin. This has as a consequence that Mp remains bounded
for rectangular domains with a narrow gap no matter how small the gap. Thus, to
achieve the same sort of result we need several gaps.

The construction in this case is much the same as in case 1 except we use domains
Ω′(n, a) which are illustrated in Figure 2 above in place of the domains Ω(n, a).

Note that Ω′(n, a) is obtained from Ω(n, a) by adding gaps all of size a and
equally spaced apart a distance of 1/n in all of the top n − 1 right rooms. The
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main point is that no matter how much smaller a is than 1/n, the kp metric will
essentially ignore these slits in the nonsymmetrized domain Ω. On the other hand,
the domain Ω? will appear to have very long narrow corridors since δΩ? will be
nearly constant (and very small) on intervals of length 1/2i.

Ω

1/n

1/n

1/n

a

1

1 1

1/n

’ (n,a)

a

Figure 2. The domain Ω′(n, a) of Example 5.2.

6. The Case p = 1

In this section we explore to what extent our results about p-Poincaré domains
are valid for the case p = 1. The geometry of 1-Poincaré domains has been char-
acterized by Maz’ja in his book [Maz85] (see §3.1 and §3.2). For simply connected
planar domains, Maz’ja’s sufficiency condition has recently been simplified by two
of the authors, see [StaSt] and we now described these characterizations.

A crosscut α of Ω separates Ω into two simply connected subdomains: Ω1(α)
and Ω2(α) where m2(Ω1(α)) ≤ m2(Ω)/2. We are primarily concerned with three
types of crosscuts; namely, general crosscuts α, segmental crosscuts σ, i.e., those
crosscuts of Ω which are line segments, and hyperbolic geodesic crosscuts τ .

Theorem 6.1. (Maz’ja) A domain Ω ⊂ C of finite area is a 1-Poincaré domain
if and only if

(1) sup
U

{
m2(U)

Λ(∂U ∩ Ω)

}
<∞,

where the supremum is taken over all open subsets U ⊂ Ω such that ∂U ∩Ω is a dis-
joint union of C∞-curves and m2(U) ≤ m2(Ω)/2. Moreover, the above supremum
is comparable to M1(Ω).
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Theorem 6.2 [StaSt]. Let Ω be a simply connected domain in the plane with finite
area. If we let

A = sup
{
m2(Ω1(α))

Λ(α)
: α is an arbitrary crosscut of Ω

}
,

G = sup
{
m2(Ω1(τ))

Λ(τ)
: τ is a hyperbolic geodesic crosscut of Ω

}
, and

L = sup
{
m2(Ω1(σ))

Λ(σ)
: σ is a segmental crosscut of Ω

}
,

then we have

(2) A ≈ G ≈ L ≈M1(Ω).

In Example 5.2 we constructed bounded p-Poincaré domains whose Steiner
symmetrizations failed to be p-Poincaré domains for each p > 1. Interestingly,
the restriction on p was necessary as the following stronger version of Theorem C
shows.

Theorem 6.3. If Ω is any connected 1-Poincaré domain whose vertical cross
sections have lengths which are uniformly bounded by b > 0, then

M1(Ω?) . M1(Ω) + b.

Proof. We let π1 and π2 denote the projection operators on the x- and the y-axes
respectively. Suppose that Ω is as in the statement of the theorem. Observe that Ω?

is simply connected and hence we can define L? to be the quantity in Theorem 6.2
corresponding to segmental crosscuts of the domain Ω?. By Theorem 6.2, it suffices
to show that L? . M1(Ω) + b. To this end, let σ? be a segmental crosscut of Ω?.

Firstly, suppose that the imaginary parts of the endpoints of σ? are either both
positive or both negative or that the real part of one endpoint is either α or β (recall
our notation from the definition of centerlines). We then have two possibilities:
either Ω?

1(σ
?) is contained in the vertical strip determined by σ? or else Ω?

2(σ
?) is

contained in this strip. In the first case we have m2(Ω?
1(σ

?)) ≤ Λ(σ?)b. Otherwise,

m2(Ω?
1(σ

?)) ≤ m2(Ω?
2(σ

?)) ≤ Λ(σ?)b.

In either case we have m2(Ω?
1(σ

?))/Λ(σ?) ≤ b.
Henceforth we assume that the imaginary parts of the endpoints of σ? have

different signs and that the real parts are not α or β. Write π1(σ?) = [a1, a2].
Without loss of generality, we assume that π1(Ω?

1(σ
?)) ⊂ [a1,∞). Let S be the

vertical cross section for Ω with π1(S) = {a2}. Clearly, since Ω? is a Steiner
symmetric domain, Λ(S) ≤ 2Λ(σ?). If we define Ω(S) = {w ∈ Ω : <w > a2} and
similarly define Ω?(S?) then these sets have the same area and Ω?

1(σ
?) \ Ω?(S?) is

contained in the vertical strip determined by σ?. Consequently,

m2(Ω?
1(σ

?))
Λ(σ?)

≤ m2(Ω?(S?))
Λ(σ?)

+ b =
m2(Ω(S))

Λ(σ?)
+ b ≤ 2

m2(Ω(S))
Λ(S)

+ b.
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Now observe that m2(Ω(S)) ≤ m2(Ω)/2 and hence by Theorem 6.1 we have

m2(Ω(S)) . M1(Ω)Λ(S).

Combining this with the above yields that

m2(Ω?
1(σ

?))
Λ(σ?)

. M1(Ω) + b

so that L? . M1(Ω) + b and the proof is complete. �
Now we prove an analog to Theorem A when p = 1. Of course, the kp-metric

which played such a prominent role when p > 1 is no longer defined. On the other
hand, there is a substitute for the quantityKp,Ω(w0) which can be used when p = 1.
Following [SmSt90] we define

h1,Ω(w1, w2) = inf{sup
w∈γ

1
δΩ(w)

: γ path in Ω from w1 to w2}

and observe that

lim
p→1

∫
γ

ds

δ
1/(p−1)
Ω

p−1

= sup
w∈γ

1
δΩ(w)

.

Hence, it is natural to define

K1,Ω(w0) = sup
τ
h1,Ω(w0, τ) ·m2(Ω(τ))

where the supremum is taken over all hyperbolic geodesics τ with w0 /∈ τ . Similarly,
for a b-strip Ω we put

V1,Ω(w0) = sup
L
h1,Ω(w0, L) ·m2(Ω(L))

where the supremum is taken over all vertical crosscuts L = Ωx with x 6= <w0.
Finally, closely related to the above is the quantity

V = sup
{
m2(Ω1(L))

Λ(L)
: L is a vertical crosscut of Ω

}
.

Lemma 6.4. Let γ be a hyperbolic geodesic containing the distinct points w0 and
w1 of Ω. Let τ1 be a hyperbolic geodesic of Ω which is nearly orthogonal γ at w1.
Then we have

(3) sup
w∈γ(w0,w1)

1
δΩ(w)

≈ h1(w0, w1) ≈ h1(w0, τ1).

Proof. If ρΩ(w0, w1) < 1, then there is nothing to prove since δΩ(w) ≈ δΩ(w0) for
w ∈ γ(w0, w1). Assume that ρΩ(w0, w1) ≥ 1 and let w? be the point on γ(w0, w1)
where δΩ is a minimum. We modify w? slightly so that δΩ(w?) is comparable to
the minimum value and ρΩ(w?, w1) ≥ 1. We can then find a hyperbolic geodesic
τ? which is nearly orthogonal to γ at w? for which Λ(τ?) ≈ δΩ(w?).

By Lemma 2.3, τ? separates w0 from τ1. Hence any curve from w0 to τ1 in Ω
must intersect τ? and therefore h1(w0, τ1) & δΩ(w?)−1. The rest of the proof is
now immediate. �



POINCARÉ DOMAINS: GEOMETRY AND SYMMETRIZATION 33

Theorem 6.5. Suppose that Ω is a b-strip and γ is a centerline for Ω with w0 ∈ γ.
Then,

(i) V1,Ω(w0) . K1,Ω(w0) + b,
(ii) V ≤ V1,Ω(w0)/2 and
(iii) M1(Ω) . V + b.

Proof. To prove (i), let L be a vertical crosscut with w0 /∈ L. We will assume that
L is to the right of w0. Let w1 be the first intersection of γ with L, starting at w0.
As before, let w? be a point on γ(w0, w1) where δΩ is a minimum and τ? a nearly
orthogonal hyperbolic geodesic with length comparable to δΩ(w?). By definition
and Lemma 6.4

h1,Ω(w0, L) . 1
δΩ(w?)

≈ h1,Ω(w0, τ
?)

and as argued earlier in the proof of Theorem 2.7,m2(Ω(L)) . m2(Ω(τ?))+bδΩ(w?).
Combining these inequalities we obtain that

h1,Ω(w0, L) ·m2(Ω(L)) . h1,Ω(w0, τ
?) ·m2(Ω(τ?)) + b ≤ K1,Ω(w0) + b

which proves (i).
We again let L be a vertical crosscut with w0 /∈ L. By definition, either Ω1(L) =

Ω(L) or else m2(Ω1(L)) ≤ m2(Ω(L)). It is obvious that h1,Ω(w0, L) ≥ 2/Λ(L) and
hence

m2(Ω1(L))
Λ(L)

≤ 1
2
h1,Ω(w0, L) ·m2(Ω(L)) ≤ 1

2
V1,Ω(w0)

which proves (ii).
Finally, an argument similar to the proof of Theorem 6.3 shows that L . V + b.

Hence, (iii) follows from this and Theorem 6.2. �
Theorem 6.6. If Ω is a simply connected domain with finite area and w0 ∈ Ω,
then

M1(Ω) . K1,Ω(w0) . m2(Ω)
δΩ(w0)2

M1(Ω).

Proof. Let τ be a hyperbolic geodesic in Ω with w0 /∈ τ . It is immediate from
the definitions that m2(Ω1(τ)) ≤ m2(Ω(τ)) and that Λ(τ)−1 ≤ h1,Ω(w0, τ). Multi-
plying these inequalities and taking suprema yields that G ≤ K1,Ω(w0) and so by
Theorem 6.2 we have M1(Ω) . K1,Ω(w0).

To prove the second inequality, we begin again with a hyperbolic geodesic τ in
Ω with w0 /∈ τ . Let γ be the hyperbolic geodesic containing w0 which is orthogonal
to τ and let wτ be the point of intersection of these curves. Suppose first that
h1,Ω(w0, wτ ) ≤ m0/δΩ(w0), where m0 ≈ 1 will be specified below. Then inequality
(4.2) yields that

(4) h1,Ω(w0, τ) ·m2(Ω(τ)) . m2(Ω)
δΩ(w0)

. m2(Ω)
δΩ(w0)2

M1(Ω),

which is the required inequality.
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Next suppose that h1,Ω(w0, wτ ) > m0/δΩ(w0). We assume thatm0 was chosen so
that Lemma 2.2 (b) now implies that ρΩ(w0, wτ ) > 1. By Lemma 6.4 (and Lemma
2.2 again) there is a point w? ∈ γ(w0, wτ ) with the property that ρΩ(w?, wτ ) ≥ 1
and h1,Ω(w0, τ) ≈ δΩ(w?)−1. Let τ? be a hyperbolic geodesic in Ω which is nearly
orthogonal to γ at w? and has length comparable to δΩ(w?). By Lemma 2.3 and
the above we have

(5) h1,Ω(w0, τ) ·m2(Ω(τ)) . m2(Ω(τ))
δΩ(w?)

. m2(Ω(τ?))
Λ(τ?)

.

Now if m2(Ω(τ?)) ≤ m2(Ω)/2, then Ω1(τ?) = Ω(τ?) and so by Theorem 6.1 and
(5) we obtain

h1,Ω(w0, τ) ·m2(Ω(τ)) . M1(Ω).

On the other hand, if this is not the case, then w0 ∈ Ω1(τ?). Since h1,Ω(w0, wτ ) >
m0/δΩ(w0), we have that δΩ(w?) is small compared to δΩ(w0). Thus Ω1(τ?) con-
tains a disk of radius comparable to δΩ(w0) (centered at w0) and hence again by
Theorem 6.1 we have

h1,Ω(w0, τ) ·m2(Ω(τ)) . m2(Ω)
δΩ(w?)

. m2(Ω)
δΩ(w0)2

m2(Ω1(τ?))
Λ(τ?)

. m2(Ω)
δΩ(w0)2

M1(Ω)

which proves the theorem. �
It is a fact that the class of p-Poincaré domains increases with p; see the Corollary

in §4.2 in [Maz85]. In particular, 1-Poincaré domains are p-Poincaré domains for
all p, 1 ≤ p < ∞. Surprisingly, there is a fairly general class of domains for which
the opposite relation is true.

Theorem 6.7. Let Ω be a b-strip containing the origin and which projects to the
interval (α, β). Suppose that Λ(Ωy) . Λ(Ωx) whenever 0 ≤ x < y < β or α < y <
x ≤ 0 and |x− y| ≤ 1. If Mp(Ω) <∞ for some 1 < p <∞, then M1(Ω) <∞.

Proof. Assume that Mp(Ω) < ∞ for some p, 1 < p < ∞. Hence Vp,Ω(0) < ∞, by
Theorem A. We will show that V is finite, and then the theorem will follow from
Theorem 6.5.

Fix a vertical crosscut L corresponding to an xL which we assume without loss
of generality is positive. First consider the case that β ≤ xL + 1. Then, by the
hypothesis on the cross sectional lengths of Ω, m2(Ω(L)) . Λ(L), so that the ratio
used to define V is bounded be a constant comparable to 1.

Next we suppose that y = xL + 1 < β, and denote by Ly the vertical crosscut
corresponding to y. Then any curve connecting L to Ly has arc length at least 1,
and δΩ(w) . Λ(L) for w ∈ Ω with x ≤ <w ≤ y by our assumptions on Ω. Thus

1
Λ(L)

. kp−1
p (L,Ly) ≤ kp−1

p (0, Ly) ,

and so
m2(Ω1(L))

Λ(L)
≤ m2(Ω(L))

Λ(L)
. m2(Ω(Ly)) + Λ(L)

Λ(L)
. kp−1

p (0, Ly) ·m2(Ω(Ly)) + 1 .

This last term, by definition, is bounded by Vp,Ω(0) + 1, so V . Vp,Ω(0) + 1 < ∞
and the proof is complete.

The next example shows that the approximate monotone decrease in cross sec-
tional length of Ω was a necessary assumption in Theorem 6.7.
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Example 6.8. Suppose that α ≥ 1. Let x0 = 1 and xn = xn−1 − xα
n−1/2 for

n = 1, 2, . . . . Then, xn → 0 and we define

Ω = (0, 2) × (−1, 1) \
∞⋃

n=1

{(x, y) | x = xn and xα
n ≤ |y| < 1} .

Then Mp(Ω) <∞ if and only if p ≥ α.

Since Ω is a 2-strip, we may use Theorem A to see this. Let w0 = (1, 0) and note
that δΩ((x, 0)) ≈ xα for 0 < x < 1. Suppose 1 < p < α+ 1 and fix x, 0 < x < 1/2.
Let L = Ωx, so that m2(Ω(L)) = x and

kp−1
p (w0, L) ≈

(∫ 1

x

dt

tα/(p−1)

)p−1

≈ xp−1−α .

Thus kp−1
p (w0, L) · m2(Ω(L)) ≈ xp−α, so Vp,Ω(w0) = ∞ and Mp(Ω) = ∞ if 1 <

p < α, while Vp,Ω(w0) < ∞ and Mp(Ω) < ∞ if α ≤ p < α + 1. For p = 1 < α,
consideration of the crosscuts Ln = Ωxn

shows that V = ∞ and so M1(Ω) = ∞ by
Theorems 6.5 and 6.6, while V and M1(Ω) are finite if p = 1 = α. The computation
for p ≥ α+ 1 is similar and will be omitted.

Example 6.9. Let Ω = {(x, y) | 0 < y < e−|x|,−∞ < x < ∞}. Then, for
1 ≤ p <∞, Mp(Ω) <∞.

As noted above the class of p-Poincaré domains increases with p, and so it is
sufficient to prove M1(Ω) < ∞. Let w0 = (0, 1/2), and note that Ω is a 1-strip.
Thus, by Theorem 6.5, it is enough to show that V <∞. To see this let x > 0 and
L = Ωx. Then Λ(L) = e−x =

∫∞
x
e−t dt = m2(Ω1(L)), and so V = 1 and the proof

is complete.

Remark. In Example 4.10 it was shown that a p-Poincaré domain can not contain
arbitrarily long rectangular passages. The current example shows, however, that a
p-Poincaré domain can contain arbitrarily long rectangles. We also remark that the
demonstration that Mp(Ω) <∞ in this example could have been based on Lemma
3.1 and Theorem 3.5.

We end this section with an example which shows the necessity of the bounded-
ness assumption in Theorem 6.3. The example is of a 1-Poincaré domain whose
Steiner symmetrization fails to be a p-Poincaré domain for all p ≥ 1.
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Figure 3. This domain Ω is a p-Poincaré domain for all p ≥ 1, but its
Steiner symmetrization Ω? is not a p-Poincaré domain for any p ≥ 1.

Example 6.10. The domain Ω is illustrated in Figure 3, where the x- and y- axes
are determined by the location of the two points (0, 0) and (1, 0). The left most
boundary curve is given by −x = 2−y, y ≥ 0, and the parameters ai shall be
specified presently.

Note that corresponding to each ai, Ω will have i “elbows” of height and width
equaling one, and with thickness ai. To make the p-Poincaré inequalities fail on Ω?

for all p will require no restrictions on the parameters. Since Ω? contains rectangular
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passages of arbitrarily long lengths, this follows from Example 4.10 when p > 1 and
it is an immediate consequence of Theorem 6.1 for p = 1. Alternatively, this can
be seen directly by a simple computation using, for a given such (vertical) passage
P , the piecewise linear test function which is given by u(x, y) = y on P and is
constant on the two remaining complementary components to show that such a
domain cannot be a p-Poincaré domain for any p ≥ 1.

To make Ω a 1-Poincaré domain, we first of all must require that
∑
nan <∞,

to ensure that |Ω| < ∞. By Theorem 6.6, it suffices to show that L < ∞. Due to
the geometry of Ω, the only segmental crosscuts σ which need to be considered are
the horizontal crosscuts σi which protrude to the left of the y−axis at the lower
left bases of the first elbows associated with ai for i ≥ 2. For sufficiently large i,
Ω(σi) consists of all the elbows associated with aj for j ≥ i together with the part
of Ω to the left of the y−axis with y > 1 + 2 + · · · + (i− 1) ≡ yi. Hence,

m2(Ω1(σi)) ≈
∑
j≥i

jaj +
∫ ∞

yi

2−t dt .
∑
j≥i

jaj + 2−yi ,

and Λ(σi) = 2−yi . Thus if the ai satisfy∑
j≥i

jaj . 2−i2/2,

for all i, then Ω will be a 1-Poincaré domain. For example one can take ai = 2−i2/i.

7. BLD Images of b-Strips

In this section we extend our results on b-strips to domains that are bilipschitzian
images of them. The geometric definition of a b-strip is unstable under small bilip-
schitzian perturbations while, on the other hand, we observed in §4 that the bilip-
schitzian image a p-Poincaré domain will continue to be one. Thus it should be
expected that our main results extend to a broader class of domains. This extension
will be at the expense of the simple geometry of b-strips; it no longer will be as
routine to verify that a given domain satisfies the geometric hypotheses.

We say that a homeomorphism T : Ω′ → Ω is a locally uniformly bilipschitz
mapping if, for any point in Ω′, the restriction of T to a suitably small neighborhood
of that point is a bilipschitz mapping with constants independent of the point.
In this case we write Ω ≈ Ω′. It is clear that an equivalent definition is that
Λ(T (η)) ≈ Λ(η), for all rectifiable curves η ⊂ Ω′. For this reason such a mapping
T is also called a bounded length distortion, or BLD mapping, see [Väi] and also
[Geh]. Observe that a BLD image of b-strip can be quite general. For example, an
unbounded b-strip can be mapped by a BLD homeomorphism to a domain spiraling
out to infinity.

We next collect some simple observations concerning these mappings.

Lemma 7.1. Suppose that Ω = T (Ω′), where T is a BLD mapping. Then
(a) δΩ(T (w′)) ≈ δΩ′(w′), w′ ∈ Ω′;
(b) kp,Ω(T (w′

1), T (w′
2)) ≈ kp,Ω′(w′

1, w
′
2), w

′
1, w

′
2 ∈ Ω′;

(c) m2(E) ≈ m2(T (E)), E ⊂ Ω′ a Borel set;
(d) Mp(Ω) ≈Mp(Ω′), 1 ≤ p <∞.
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Proof. Part (a) is an obvious consequence of the definition of a BLD map, and (b)
follows immediately from (a). The Jacobian of a BLD mapping T is comparable to
1, and so (c) is clear. Since |∇(u ◦ T )| ≈ |∇u| almost everywhere, for u ∈ C1(Ω′),
(d) is a consequence of the change of variables formula for Sobolev functions (see
§2.2 of [Zie]).

Since the definition of Kp,Ω′(w′
0) involves the hyperbolic geometry of Ω′ and this

geometry is not preserved by a BLD mapping T , it is not clear how this quantity
compares to Kp,Ω(T (w′

0)) when Ω ≈ Ω′.

Theorem 7.2. Let Ω and Ω′ be simply connected planar domains with finite area.
Suppose that Ω = T (Ω′), where T is a BLD mapping, and let w′

0 ∈ Ω′. Then, for
1 ≤ p <∞, Kp,Ω′(w′

0) ≈ Kp,Ω(T (w′
0)).

Proof. Suppose first that 1 < p < ∞. Let w0 = T (w′
0), δ0 = δΩ(w0) and δ′0 =

δΩ′(w′
0). Since Ω ≈ Ω′ is an equivalence relation, it is only necessary to prove that

Kp,Ω(w0) . Kp,Ω′(w′
0). We start by establishing a basic lower bound for Kp.

By using the geometry of hyperbolic geodesics in the unit disk and conformal
invariance, we see that there is a fixed integer N and a collection of hyperbolic
geodesics τ ′1, . . . , τ

′
N in Ω′ such that ρΩ′(w′

0, τ
′
i) = 1, for 1 ≤ i ≤ N , and

{w′ ∈ Ω′ | ρΩ′(w′
0, w

′) ≥ 2} ⊂
N⋃

i=1

Ω′(τ ′i) .

It follows that m2(Ω′) . m2(∪Ω′(τ ′i)) and, for 1 ≤ i ≤ N , kp−1
p (w′

0, τ
′
i) ≈ (δ′0)

p−2.
Thus, we obtain the inequality

(δ′0)
p−2m2(Ω′) .

N∑
i=1

(δ′0)
p−2m2(Ω′(τ ′i)) . Kp,Ω′(w′

0) .

Suppose that τ is a hyperbolic geodesic in Ω with 0 < ρΩ(w0, τ) ≤ m0. Let γ be
the hyperbolic geodesic in Ω containing w0 which is orthogonal to τ at a point wτ .
Lemma 2.2 implies that there is a λ > 1 for which

Λ(γ(w0, wτ )) . λm0δ0 and δΩ(w) & λ−m0δ0

for all w ∈ γ(w0, wτ ). Hence, kp−1
p (w0, τ)·m2(Ω(τ)) . λm0pδp−2

0 m2(Ω). Combining
this with parts (a) and (c) of Lemma 7.1 and the above, we have

kp−1
p (w0, τ) ·m2(Ω(τ)) . λm0pδp−2

0 m2(Ω)

≈ λm0p(δ′0)
p−2m2(Ω′) . λm0pKp,Ω′(w′

0) .

This reduces the proof to the consideration of hyperbolic geodesics τ in Ω with
ρΩ(w0, τ) ≥ m0, where m0 is large.

Now let τ = τ4 be a hyperbolic geodesic in Ω with ρΩ(w0, τ4) ≥ m0, wherem0 ≥ 4
will be specified below. We must show that kp−1

p (w0, τ4) ·m2(Ω(τ4)) . Kp,Ω′(w′
0).
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Again, let γ be the hyperbolic geodesic in Ω containing the point w0 which is
orthogonal to τ4 at a point w4. Let w3 and w2 be the points on γ(w0, w4) for which

ρΩ(w3, w4) = 1 and ρΩ(w2, w4) = 2.

By Lemma 2.3, there are disjoint hyperbolic geodesics τ2, τ3 which are nearly
orthogonal to γ at w2, w3, satisfy Λ(τi) ≈ δΩ(wi) and are also disjoint from τ4.
Thus, Ω(τ4) ⊂ Ω(τ3) ⊂ Ω(τ2) and w0 /∈ Ω(τ2). By Lemma 2.6 we have

kp−1
p (w0, τ4) ·m2(Ω(τ4)) . kp−1

p (w0, τ3) ·m2(Ω(τ3))

and we focus our attention on τ3.
Now consider the images of these curves under the mapping T−1. We label the

image curves γ′, τ ′2, τ
′
3 and the points w′

0, w
′
2, w

′
3. We caution the reader that

these curves in Ω′ are not hyperbolic geodesics but they are crosscuts and they do
partition Ω′ into six disjoint subregions. Moreover, by Lemma 7.1 the lengths of
these curves, the areas that they determine and the distances δΩ′ are all comparable
to the corresponding lengths, areas and distances in Ω.

Denote by σ′ the hyperbolic geodesic in Ω′ containing w′
0 and w′

3, and define w′′
3

if necessary so that σ′(w′
0, w

′′
3 ) intersects τ ′3 just at w′′

3 . Define w′
1 ∈ σ′(w′

0, w
′′
3 ) by

the equation

(1)

 ∫
σ′(w′

0,w′
1)

ds

δ
1/(p−1)
Ω′


p−1

= ε

 ∫
σ′(w′

1,w′′
3 )

ds

δ
1/(p−1)
Ω′


p−1

,

where 1/2 > ε > 0 will be specified below. Let τ ′1 be a hyperbolic geodesic of Ω′

which is nearly orthogonal to σ′ at the point w′
1 and whose length is comparable

to δΩ′(w′
1).

Suppose that Ω′(τ ′3) ⊂ Ω′(τ ′1). Then, by the definition of w′
1, Lemma 7.1 and

Lemma 2.6 we see that

kp−1
p,Ω (w0, τ3) ·m2(Ω(τ3)) ≈ kp−1

p,Ω′(w′
0, τ

′
3) ·m2(Ω′(τ ′3))

.

 ∫
σ′(w′

0,w′′
3 )

ds

δ
1/(p−1)
Ω′


p−1

·m2(Ω′(τ ′1))

= (1 +
1

ε1/(p−1)
)p−1

 ∫
σ′(w′

0,w′
1)

ds

δ
1/(p−1)
Ω′


p−1

·m2(Ω′(τ ′1))

≈ 1
ε
kp−1

p,Ω′(w′
0, τ

′
1) ·m2(Ω′(τ ′1)) ≤

1
ε
Kp,Ω′(w′

0)

which proves the theorem. Thus, it suffices to prove that there is an ε sufficiently
small and m0 sufficiently large so that τ ′1 ∩ τ ′3 = ∅.
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Suppose now that τ ′1 ∩ τ ′3 6= ∅. We first show that

(2) δΩ′(w′) . Λ(τ ′3)

for all w′ ∈ σ′(w′
1, w

′′
3 ). Let w′ be such a point. By Lemma 2.2, we may as well

assume that ρΩ′(w′
1, w

′) ≥ 1. Let τ ′ be the hyperbolic geodesic through w′ which
is nearly orthogonal to σ′ and has length comparable to δΩ′(w′). By Lemma 2.3,
τ ′ is disjoint from τ ′1. By assumption, there is a point w′′

1 where the curve τ ′1 first
intersects τ ′3 starting at w′

1. We get a Jordan region using the curves τ ′1(w
′
1, w

′′
1 ),

σ′(w′
1, w

′′
3 ) and τ ′3(w

′′
1 , w

′′
3 ). It follows from the Jordan curve theorem that τ ′ must

intersect τ ′3. In other words, the curve τ ′3 intersects both hyperbolic geodesics τ ′1, τ
′

and hence (2) follows from Lemma 2.5.
Next we show the opposite inequality

(3) δΩ′(w′) ≈ Λ(τ ′) & Λ(τ ′3)

for this same point by essentially the same argument. By Lemma 7.1 and Lemma 2.5
we know that any curve which intersects both τ ′2 and τ ′3 must have length greater
than a constant multiple of δΩ(w3) ≈ Λ(τ ′3). Thus, if τ ′ has this property then (3)
follows. In particular, this must be the case if w′ /∈ Ω′(τ ′2) since we already know
that τ ′ ∩ τ ′3 6= ∅.

Finally, suppose that w′ ∈ Ω′(τ ′2) and τ ′ ∩ τ ′2 = ∅. By our construction of the
curve σ′ we know that w′ /∈ Ω′(τ ′3). Moreover, w′

0 /∈ Ω′(τ ′2) and hence there is
point w′′

2 ∈ σ′ with the property that σ′(w′′
2 , w

′) ∩ τ ′2 = {w′′
2}. Observe next that

σ′(w′, w′
3) ∩ τ ′2 = ∅. For otherwise there would be a w′′′

2 ∈ τ2 where σ′(w′, w′
3) first

crosses τ ′2. Then, the Jordan region in Ω′ bounded by σ′(w′′
2 , w

′′′
2 ) and τ ′2(w

′′
2 , w

′′′
2 )

would enclose part of τ ′, thus preventing it from tending to a boundary point, which
is impossible.

Now let z′ ∈ γ′(w′
2, w

′
3) be the first intersection of this curve, starting at w′

2,
with σ′(w′′

2 , w
′
3). Since w′

3 belongs to both curves, such a point exists. Again we
obtain a Jordan region in Ω′; bounded by τ ′2(w

′
2, w

′′
2 ), σ′(w′′

2 , z
′) and γ′(w′

2, z
′),

which encloses part of τ ′. Since τ ′ must tend to the boundary of Ω′ there must be
a point z′′ ∈ τ ′ ∩ γ′(w′

2, z
′). By our construction, the distance to the boundary of

each point on γ′(w′
2, w

′
3) is comparable to δΩ(w3). Thus, Λ(τ ′) & δΩ′(w′

3) and (3)
is proved.

By (2) and (3) we have that δΩ′(w′) ≈ Λ(τ ′3) for all w′ ∈ σ′(w′
1, w

′′
3 ). In addition,

the Gehring-Hayman theorem yields that Λ(σ′(w′
1, w

′′
3 )) . Λ(τ ′1) + Λ(τ ′3) ≈ Λ(τ ′3)

since τ ′1∩ τ ′3 6= ∅. It follows that the quasihyperbolic distance in Ω′ between w′
1 and

w′′
3 satisfies k2,Ω′(w′

1, w
′′
3 ) . 1 and similarly with the hyperbolic metric.

Hence, by our assumption and Lemma 7.1 we obtain from the triangle inequality
that

m0 ≤ ρΩ(w0, τ3) . ρΩ′(w′
0, w

′′
3 )

≤ ρΩ′(w′
0, w

′
1) + ρΩ′(w′

1, w
′′
3 ) . ρΩ′(w′

0, w
′
1) + 1

so that ρΩ′(w′
0, w

′
1) & m0. This last inequality requires that m0 be sufficiently large

and we chose m0 to satisfy this requirement. This insures that Λ(σ′(w′
0, w

′
1)) &
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δΩ′(w′
1) and thus by (1), (2), (3) we have

δΩ′(w′
1)

p−1

δΩ′(w′
1)

.

 ∫
σ′(w′

0,w′
1)

ds

δ
1/(p−1)
Ω′


p−1

= ε

 ∫
σ′(w′

1,w′′
3 )

ds

δ
1/(p−1)
Ω′


p−1

. ε
δΩ′(w′

1)
p−1

δΩ′(w′
1)

,

which is clearly impossible for ε sufficiently small. This completes the proof in the
case p > 1.

The case p = 1 is proved by modifying the above argument as was done in §6
to prove Theorem 6.5. In particular, occurrences of kp−1

p should be replaced by
h1. The only major change is that the two cases to consider are: h1,Ω(w0, τ) ≤
m0δ

−1
0 or the opposite inequality. In the latter case we replace equation (1) with

h1,Ω′(w′
0, w

′
1) = εh1,Ω′(w′

1, w
′′
3 ), where ε = m−1

0 . �
The following result is an immediate consequence of Theorem A in the introduc-

tion and Theorem 7.2. (Recall that more is true for p = 1; see Theorem 6.6.)

Corollary 7.3. Suppose Ω ≈ Ω′, where Ω′ is a b-strip, and let w0 ∈ Ω. Then, for
1 < p <∞, Mp(Ω) <∞ if and only if Kp,Ω(w0) <∞.

The results in this paper should be compared to those in [EvHar]. In that paper
Evans and Harris introduced generalized ridged domains and studied the Poincaré
inequality on such domains. In their work a generalized ridge plays a role analogous
to that of the centerline γ in the proof of Theorem 3.5. We wish to emphasize,
however, that not all b-strips are generalized ridged domains. It can be shown, for
example, that the domain in Example 6.8 is not a generalized ridge domain, while
it clearly is a b-strip. On the other hand, generalized ridged domains are closely
related to b-strips. In particular, examples 6.1, 6.2 and 6.3 of [EvHar] are all b-
strips, and it is readily verified that their condition for the validity of the Poincaré
inequality on those domains is equivalent to the condition that Kp,Ω(w0) < ∞. It
seems likely that any generalized ridge domain is, in fact, a BLD image of a b-strip.
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