
ARCLENGTH FORMULAS IN CONFORMAL MAPPING

Alexander Stanoyevitch

INTRODUCTION: Let Ω ⊆ C be a Jordan domain (i.e., a bounded planar domain
whose boundary is a Jordan curve) and let D denote the unit disk. Throughout
we let “�” denote arclength or more specifically the Hausdorff one-dimensional
measure. We consider a homeomorphism ϕ : D −→ Ω which is C1 on D. Given an
arc J ⊆ ∂D, we seek to express the length of the image arc: �(ϕ(J)) in terms of
integral formulas involving (first-order) derivatives of ϕ. In this general situation, it
is always true and straightfoward to prove that arclength is lower semicontinuous,
i.e.,

(1) �(ϕ(J)) ≤ lim
r↑1

�(ϕ(rJ)) = lim
r↑1

∫
J

∣∣∣∣ ∂

∂θ
ϕ(reiθ)

∣∣∣∣dθ

(here rJ denotes the dilation of J : {reiθ : eiθ ∈ J}).
The first progress on this problem when ϕ is conformal on D dates back to 1916

when F. & M. Riesz [Rz-16] proved that in case ∂Ω is rectifiable we then have the
following formula valid for each arc J ⊆ ∂D:

(2) �(ϕ(J)) =
∫

J

lim
r↑1

∣∣ϕ′(reiθ)
∣∣ dθ ,

The question arises whether the hypothesis of rectifiability of ∂Ω in the Riesz
result (2) can be weakened. By a result of Gehring and Hayman [Ge&Ha–62] if
the image arc ϕ(J) is rectifiable then so will be the image of the hyperbolic geodesic
in D which joins the endpoints of J . The resulting Jordan subdomain of ϕ(D) has
rectifiable boundary and with an appropriate change of variables the Riesz result
(2) can be shown to remain valid if only �(ϕ(J)) < ∞. With a bit more work,
making use of the nontangential maximal function, one can go on to show that

(3) �(ϕ(J)) = lim
r↑1

�(ϕ(rJ)) = lim
r↑1

∫
J

∣∣ϕ′(reiθ)
∣∣ dθ .

By (1), (3) is certainly true when �(ϕ(J)) = ∞ hence (3) is always valid, i.e., when
ϕ is conformal, arclength is continuous.

In attempting to extend (2) to the remaining case �(ϕ(J)) = ∞, one problem
is that the limits in (2) can fail to exist almost everywhere on J . In fact, as was
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shown by Lohwater, Piranian & Rudin [LP&R–55] the behavior of ϕ can be so
extreme that for a.e. θ

lim
r↑1

∣∣ϕ′(reiθ)
∣∣ = ∞ , lim

r↑1

∣∣ϕ′(reiθ)
∣∣ = 0 ,

(also lim
r↑1

arg ϕ′(reiθ) = ∞ , lim
r↑1

arg ϕ′(reiθ) = −∞). It is also true that any

univalent function ϕ on D satisfies limr↑1 |ϕ′(reiθ)| > 0 a.e. Hence it seems plausible
that if we replace the limit in (2) with a limit supremum, the resulting formula:

(4) �(ϕ(J)) =
∫

J

lim
r↑1

∣∣ϕ′(reiθ)
∣∣ dθ

might always be valid. The main purpose of this note is to give an example of a
domain for which the formula (4) fails. The boundary of the domain is of fractal
type and our methods rely on the recent pioneering work of Makarov [Mak–85]
on boundary behavior of conformal mappings.

The author would like to express his thanks to Chris Bishop who had suggested to
him such an approach to an example. Previously the author had a less pathological
example constructed directly by its series expansion.

One can construct examples to show that with the exception of (1), none of our
formulas have valid analogues in case ϕ ∈ C∞(D) (with or without the rectifiability
of ∂Ω). We close this introduction with a question.

Question. Which of our formulas have analogues in case ϕ is quasi–conformal on
D?

THE CONSTRUCTION: In this section we construct a Jordan domain Ω̃ and a
conformal map h : D −→ Ω̃ such that �(∂Ω̃) = ∞ but

∫
∂D

lim
z−→ζ
z∈D

|h′(z)| |dζ| < ∞

This integral differs from the one in (4) in that the limit supremum is unrestricted
as opposed to radial and thus the above map is a fortiori a counterexample to (4).
For the requisite definitions of Hausdorff measures and dimension we cite [Fa–85].
The domain Ω̃ will be obtained from the familiar (Van Koch) snowflake domain
Ω which is constucted as follows: Let Ω0 be an equilateral triangle of side length
1. To obtain Ω1, we build 3 new equilateral triangles exterior to Ω0 each having
side length 1

3
and sharing the middle 1

3
segments of the different sides of Ω0. The

domain Ω1 is defined to be the union of Ω0 with these 3 new equilateral triangles.
Note that Ω1 has 3 · 4 sides each of length 3−1. We continue this construction so
that the nth generation we have a polygon Ωn with 3 · 4n sides of length 3−n each.
The snowflake domain Ω is defined to be limΩn = ∪Ωn

The snowflake Ω has recently been the subject of several investigations. In
1982, Kaufman and Wu proved [Ka&Wu–85] that the harmonic measure of Ω is
supported on a set of Hausdorff dimension strictly smaller than that (log 4/ log 3)
of the boundary curve. Subsequently, Carleson [Ca–85] showed that the harmonic
measure of Ω lives on a set of Hausdorff dimension ≤ 1. Finally Makarov [Ma–P]
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showed that it lives on a set of length (≡ Hausdorff one–dimensional measure) zero.
The techniques used to obtain these latter two results relied heavily on information
and ergodic theory. We give an independent proof of the Makarov result based
entirely on complex analysis which yields another property of the snowflake which
we will use. Recall that a Plessner point of a meromorphic function g : D −→
C ∪ {∞} is a point ζ ∈ ∂D such that {g(z) : r < |z| < 1, z ∈ Aζ} is dense in
C ∪ {∞} for any r < 1 and Stolz angle Aζ at ζ. Plessner proved [Pl–27] that the
nontangential limit lim

z−→ζ
z∈Aζ

g(z) exists in C at a.e. non-Plessner points ζ ∈ ∂D.

Lemma. The harmonic measure of the snowflake Ω is supported on a set of length
zero on ∂Ω. Moreover, if f : D −→ Ω is a Riemann map then a.e. ζ ∈ ∂D is a
Plessner point of f ′.

Proof. A theorem of Makarov states that for any Riemann map g : D −→ D which
is so pathological that the nontangential (or radial) limits of g′ exist in C almost
nowhere, the harmonic measure of D will be supported on a set of zero length
(i.e. there exists A0 ⊆ ∂D such that �(A0) = 2π but � (g(A0)) = 0; see [Ma–84]
Theorem 3 or [Po–86] Corollary 1). We define AT = {ζ ∈ ∂D : limr↑1 f ′(rζ) exists
in C}. The function f will necessarily be conformal at each point ζ ∈ AT (see
Theorem 10.5 and the accompanying discussion in [Po–75]). Define a cone with
vertex p and angle α to be a set of the form

{p + reiθ : 0 < r < r0, θ0 < θ < θ0 + α}.
The conformality condition means, in particular, that for each ε > 0 and each image
point f(ζ) (ζ ∈ AT ) on the boundary ∂Ω of the snowflake, there will be a cone with
vertex f(ζ) and angle π − ε which is entirely contained in Ω. For a subset A ⊂ AT

it is known that
�(A) = 0 ⇐⇒ � (f(A)) = 0

(see [Po–75] Theorem 10.16). These facts together with the aforementioned theo-
rem of Plessner show that the lemma will be proved as soon as we show that the
set T of those points in ∂Ω which possess the above cone property is of zero length.
Letting,

Tn = {p ∈ ∂Ω| there exists a cone in Ω with vertex p,

angle
99
100

π and diameter ≥ 10 · 3−n}
it is clear that T ⊆ ∪Tn so we need only show that �(Tn) = 0. We consider first the
nth generation Ωn of the snowflake. The boundary ∂Ωn is made up of congruent
arcs which consist of 4 segments each of length 3−n such that the outer two segments
are colinear and the inner two segments form two sides of an equilateral triangle.
For a given such configuration, points on the outer two segments might be on Tn

but points on the inner two segments (or points of later generations arising from
these segments) cannot (because there is no room for the cone). Similarly when we
pass from Ωn to Ωn+1, each of the outer two segments gets replaced by 4 segments
and the 2 middle segments of each must not contain points of Tn. We conclude
that for any m ≥ n,

�(Tn) ≤ �(Tn ∩ ∂Ωm)

≤ �(∂Ωn)
(

2
3

)m−n
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Hence �(Tn) = 0, as desired.
Aside: This argument shows that the Hausdorff dimension of T is ≤ log 2/ log 3.

We are now prepared to define the domain Ω̃. For each Plessner point ζ ∈ ∂D for
f there exists a sequence zn = zn(ζ) such that zn −→ ζ in some fixed Stolz angle
and f ′(zn) −→ 0. For each z = zn we construct a hyperbolic tent Tz with hyperbolic
vertex z and base Iz. This means that Tz is the (smaller) subdomain of D formed
by 2 circular arcs which meet ∂D at right angles and have z as a common end point,
the base Iz is defined as ∂Tz∩∂D. By applying (the conformally invariant analogue
of ) Theorem 10.8 in [Po–75], Tz can be made to have the following properties:
(“≈” means comparable and “�” shall mean “≤” with a constant)

(i) ζ ∈ Iz,
(ii) �(∂Tz) ≈ �(Iz)

(iii)
∫

∂Tz∩D

|f ′(w)| |dw| � |f ′(z)|(1 − |z|) � �(Iz).

Letting F ⊆ ∂D be a compact null set whose image f(F ) has Hausdorff dimen-
sion greater than 1 (the existence of F is guaranteed by the lemma since ∂Ω has
Hausdorff dimension > 1), we note that for a Plessner point ζ ε ∂D ∼ F , and for
zn(ζ) close enough to ζ we have Izn

∩ F = ∅. Hence the collection 〈Izn
(ζ)〉 covers

∂D ∼ F a.e. in the sense of Vitali so we can find a disjoint collection of such
intervals 〈Ij〉 such that

(iv) Ij ∩ F = ∅ for all j and
(v) �(∪Ij) = 2π

Let D̃ = D ∼ ∪Tj and Ω̃ = f(D̃) then dim(∂D) > 1 since it contains f(F ). On the
other hand, f ′ is continuous at each point of ∂D̃ ∼ ∂D and

∫

∂D̃

|f ′(w)| |dw| =
∑ ∫

∂Tj

|f ′(w)| |dw|

�
∑

|f ′(zj)|(1 − |zj |)
�

∑
�(Ij)

= 2π < ∞ .

The desired Riemann map is now readily obtained by composing f with any Rie-
mann map k : D −→ D̃.
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