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1. Introduction

The slice condition is a metric-geometric condition for domains in Euclidean
spaces Rn. It is a very weak condition which, in particular, is satisfied by every
simply connected planar domain, and was introduced by the first author and
Koskela [6] to obtain a set of geometric classifications of domains in Euclidean
spaces which support any of the Sobolev imbeddings, p ≥ n. In later research,
variations of the slice condition, including the weaker conditions known as weak
slice conditions were used to refine these results and also to investigate questions
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in other areas of analysis; see [7], [8], [9], [3], [4], [1]. In particular, it is shown in
[1] that in many metric measure spaces, including Euclidean space, one version
of the slice condition is equivalent to Gromov hyperbolicity. This version implies
all other slice-type conditions in the literature, so we may think of all slice-type
conditions as weak versions of Gromov hyperbolicity.

With this range of applications, it should be useful to have a solid under-
standing of (weak) slice conditions, and in particular whether and how they
differ from one another. Many properties and examples of these conditions
were obtained in [8] and [9] but some fundamental questions remained, includ-
ing a few that were listed in Section 6 of [9] as open problems. A couple of
these questions were answered in [10]. In this paper, we construct examples to
answer two of the remaining open problems in [9].

After some basics in Section 2, we define and briefly discuss the weak slice
conditions in Section 3. Our first example is given in Section 4: it shows that
there are 0-wslice domains (i.e. weak slice domains with a certain parameter α
equal to zero), which are not slice domains, resolving Open Problem C in [9].
In Section 5, we show that for any pair of distinct numbers α, β ∈ [0, 1), there
is a domain which is an α-wslice domain but not a β-wslice domain, thereby
resolving Open Problem B in [9]. When α ≥ β, this is not hard to deduce
from the results in [9], but it is somewhat surprising that the same is true when
α < β. In fact we prove the following result (and generalizations of it).

Theorem 1.1. For each 0 < α0 < 1, there are bounded Euclidean domains
Ω1 and Ω2 such that Ωi is an α-wslice domain, 0 ≤ α < 1, if and only if α ≤ α0

(if i = 1) or α ≥ α0 (if i = 2).

2. Notation and Terminology

Throughout this paper we will consistently employ the following notation. Note
that certain parameters are optional in the sense that they are omitted from
the notation when understood or when the exact choice is unimportant.

(Ω, d) is a rectifiably connected incomplete metric space possibly subject to
additional restrictions (it is often just a domain in Euclidean space), Ω is its
metric completion (viewed as a superset of Ω), and ∂Ω := Ω \ Ω. For points
x, y ∈ Ω, a set E ⊂ Ω, positive numbers r, s, we let:

r∨ s and r∧ s denote the maximum and minimum, respectively, of r and s;

⌈r⌉ and ⌊r⌋ denote the smallest integer m ≥ r, and the largest integer
m ≤ r, respectively;
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len(E) ≡ lend(E) denotes the Hausdorff 1-dimensional measure of E with
respect to the metric d (so if E is an arc, lend(E) is just its d-arclength);

diam(E) ≡ diamd(E) denotes the d-diameter of E;

δ(x) ≡ δΩ(x) denotes the distance from x to ∂Ω,

B(x, r) ≡ Bd,Ω(x, r) := {y ∈ Ω : d(x, y) < r},
Bx := Bd(x, δΩ(x)), and

ΓΩ(x, y) denotes the class of all rectifiable paths λ : [0, t] → Ω for which
λ(0) = x and λ(t) = y. We do not distinguish notationally between paths and
their images. Whenever E is an (open or closed) ball, tE denotes its concentric
dilate by a factor t > 0.

For α ∈ [0, 1] we will also make extensive use of subhyperbolic lengths and
the corresponding metrics. Denoting arclength measure by ds, we define these
quantities by

lenα(γ) ≡ lenα,Ω(γ) :=

∫

γ
δα−1
Ω (z) ds(z)

whenever γ is a rectifiable path in Ω, and

dα,Ω(x, y) := inf
γ∈ΓΩ(x,y)

lenα,Ω(γ),

We note that if Ω is a domain in Euclidean space, or in an imbedded k-manifold
in Rn, then len0,Ω and d0,Ω are the well-known quasihyperbolic length and quasi-
hyperbolic distance, and d1,Ω is the inner metric with respect to Ω. For brevity,
we shall denote the inner metric on Ω as dΩ and the corresponding inner di-
ameter of a subset E of Ω as diamΩ(E) in such cases. We shall also write
k(x, y) ≡ kΩ(x, y) in place of d0,Ω(x, y).

Let us call γ ∈ ΓΩ(x, y) (α;C1, C2)-efficient, or simply α-efficient, if

lenα,Ω(γ) ≤ (1 + C1)dα,Ω(x, y) + C2

We say that γ ∈ ΓΩ(x, y) is an (α,C1, C2)-quasigeodesic for x, y if γ and all its
subpaths are (α;C1, C2)-efficient, while we say that γ is an α-geodesic if it is
(α; 0, 0)-efficient (or equivalently an (α; 0, 0)-quasigeodesic). Obviously, efficient
paths always exist, with (C1, C2) as close to (0, 0) as we wish, but α-geodesics
might not exist. For instance in the Euclidean case, α-geodesics exist if α = 0,
but might not if α > 0; see [12] and [8, Example 1.1].

Let C ≥ 1, x, y ∈ Ω, and let γ ∈ ΓΩ(x, y) be a path of length l which is
parametrized by arclength. We say that γ is a C-uniform path for x, y ∈ Ω
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if l ≤ Cd(x, y) (bounded turning condition) and t ∧ (l − t) ≤ CδΩ(γ(t)) (cigar
condition). In this case, we get the following estimates

dα,Ω(x, y) ≤







4C2 log

(

1 +
d(x, y)

δΩ(x) ∧ δΩ(y)

)

, α = 0,

C ′[δΩ(x) ∨ δΩ(y) ∨ d(x, y)]α, 0 < α ≤ 1.

(2.1)

where C ′ = C ′(C,α). The α > 0 case follows by an easy integration, estimating
distance to the boundary by the triangle inequality for the initial and final parts
of the path that are close to x and y, respectively, and by uniformity for the
rest of the path. The case α = 0 is Lemma 2.14 of [2].

3. Weak Slice and Slice Conditions

In this section we define, and briefly discuss, weak slice conditions; throughout
we assume that 0 ≤ α < 1. For more details, we refer the reader to [8], [9], and
[10]. We also define the slice condition.

Suppose C ≥ 1. A finite collection F of pairwise disjoint open subsets of Ω
is a set of C-wslices for x, y ∈ Ω if

∀ S ∈ F ∀ λ ∈ ΓΩ(x, y) : len(λ ∩ S) ≥ dS/C, (WS-1)

∀ S ∈ F : S ∩ B(x, δ(x)/C) = S ∩ B(y, δ(y)/C) = ∅, (WS-2)

where dS ≥ diam(S) is some finite number associated with each wslice S. We
refer to such a set of data {(S, dS) | S ∈ F} as being C-admissible for the pair
x, y ∈ Ω. Next, we define WSα(x, y; Ω;C) by

WSα(x, y; Ω;C) := sup{ δα
Ω(x) + δα

Ω(y) +
∑

S∈F

dα
S :

{(S, dS) | S ∈ F} is C-admissible for x, y ∈ Ω }

Note that WSα(x, y; Ω;C) ≥ δα
Ω(x) + δα

Ω(y), since the empty set is trivially C-
admissible. A priori, WSα(x, y; Ω;C) could possibly be infinite, but, at least
in the Euclidean context, it is bounded. In fact, Lemma 2.3 of [8] implies that
there exists a constant C ′ = C ′(C,α) such that

WSα(x, y; Ω;C) ≤ C ′[δα
Ω(x) + δα

Ω(y) + dα,Ω(x, y)].

We use subscript notation such as F := {Si}m
i=1 and di := dSi

in cases where
we know that F is nonempty.
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We define an α-wslice space essentially by reversing this last inequality for
large subhyperbolic distance. More precisely, we say that the pair x, y satisfy
an (α,C)-wslice condition, C ≥ 1, if

dα,Ω(x, y) ≤ C WSα(x, y; Ω;C), (WS-3)

and we say that Ω is a (two-sided) (α,C)-wslice space if all pairs of points
in Ω satisfy an (α,C)-wslice condition1. When α = 0, (WS-3) simply says
that k(x, y) ≤ C(2 + card(F)), where F is a C-wslice collection of maximal
cardinality. Note that in light of (WS-1), each of the slices S must separate x
from y in Ω. It is also convenient to say that a C-admissible set {(S, dS) | S ∈
F} for x, y ∈ Ω is an (α,C)-wslice dataset for x, y if we additionally have the
following condition:

dα,Ω(x, y) ≤ C

(

δα
Ω(x) + δα

Ω(y) +
∑

S∈F

dα
S

)

If the numbers dS are not specified, it is assumed that dS := diamd(S).
Oftentimes the value of the constant C is unimportant and so we will on

such occasions refer simply to “α-wslice conditions and/or domains”. Modulo a
possible augmentation of C, condition (WS-2) can actually be dropped in case
α > 0, but it is essential in case α = 0, lest every domain be a (0, C)-wslice
domain; see [9, Theorem 5.1].

In working with the weak slice conditions, the following additional hypothe-
ses have often turned out to be useful:

∀ S ∈ F ∃ (α;C1, 0)-efficient γ ∈ ΓΩ(x, y) : lenα,Ω(γ ∩ S) ≤ Cdα
S , (WS-4)

∀ S ∈ F ∃ zS ∈ S : Bd(zS , dS/C) ⊂ S, (WS-5)

∀ S ∈ F ∀ λ ∈ ΓΩ(x, y) : diamd(λS) ≥ dS/C, (WS-1+)

where λS denotes a component of λ∩S of maximal diameter. We refer to (α,C)-
wslice domains which satisfy (WS-4), (WS-5), and (WS-1+) as (α,C)-wslice+

domains. Of these extra conditions, only (WS-1+) is significant if we do not
care about the exact value of C, since, modulo a possible quantitative change in
the value of C, (WS-4) and (WS-5) can be assumed without loss of generality;
see [10, Section 2]. The choice of C1 > 0 and γ in (WS-4) is unimportant; we
can even take γ to be an α-geodesic (and so C1 = 0) if one exists. We suspect
(at least in a Euclidean or inner Euclidean context, and modulo a controlled

1In [8] and [9], the labels (WS-2) and (WS-3) were reversed, but that does not suit our
more general discussion here.
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increase in the value of C and a change in the wslice dataset) that (WS-1+)
also follows from the (α,C)-wslice condition, but we cannot prove this.

If Ω ( Rn is a domain, we call Ω an (α,C)-wslice, or inner (α,C)-wslice,
domain if it is an (α,C)-wslice space with respect to the Euclidean or inner Eu-
clidean metric, respectively. Notice that the difference between Euclidean and
inner Euclidean α-wslice domains is rather minor since distance to the bound-
ary, the associated subhyperbolic metrics and the Hausdorff 1-dimensional mea-
sure are unchanged, and so there is no difference in any of (WS-1) through
(WS-5). The only change is in the requisite lower bound in the size of the
dS (from diam(S) to diamΩ(S)). Nevertheless, Example 3.1 of [10] shows that
there are wslice domains that are not inner wslice domains.

We say that the pair x, y ∈ Ω satisfy the C-slice condition, C ≥ 1, if there
exists F := {(Si, di)}m

i=1, with di ≡ diamd(Si), and an (0;C−1, 0)-efficient path
γ ∈ ΓΩ(x, y) such that:

(a) F is an (α,C)-wslice dataset for x, y;

(b) (WS-4) and (WS-5) hold for each 1 ≤ i ≤ m, α = 0;

(c) ∀ 1 ≤ i ≤ m, z ∈ γ ∩ Si : 1/C ≤ δΩ(z)/di ≤ C;

(d) γ ⊂ BkΩ
(x,C) ∪ BkΩ

(y,C) ∪
(
⋃m

i=1 Si

)

.

Slice spaces and domains are then defined in the same manner as their weak
slice equivalents.

This definition of a slice condition is different from the original (inner) Eu-
clidean definition in [6], but is equivalent to it in the Euclidean and inner Eu-
clidean settings (modulo a quantitatively controlled change in C). For the inter-
ested reader, we note that the original definition implies (a) by [8, Lemma 2.4],
while (b)–(d) are easy to deduce from the original definition. In the original
definition, the path γ is not assumed to be 0-efficient, but this follows from the
previously mentioned estimate WSα(x, y; Ω;C) <∼ δα

Ω(x)+δα
Ω(y)+dα,Ω(x, y)+1.

Proving that the original definition follows from the new one is routine. We
point out that we still do not know whether (WS-1+) holds for slice spaces (see
Open Problem A in Section 6 of [9]).

In the (inner) Euclidean setting, we point out that the (important) upper
bound of (c) is redundant. Indeed, Lemma 2.2 of [8] tells us that if {Si, di}m

i=1

is a (0, C)-wslice dataset for points x, y in a Euclidean domain Ω, and d is
either the Euclidean or inner Euclidean metric, then δΩ(w) < C diamd(Si) for
all w ∈ Si, 1 ≤ i ≤ m.

The point of our new definition is that it emphasizes the distinction between
slice and 0-wslice conditions. Since (WS-4) and (WS-5) follow quantitatively
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Figure 4.1: The decoration Dj

from any α-wslice condition, it seems that the crucial distinction is the existence
of a path γ which is covered by the closure of the slices and quasihyperbolic balls
around x, y. Intuitively, this means that we are able to “slice up nicely all of
the region between x and y”, whereas in a 0-wslice condition, we merely assume
that we can “slice up nicely a reasonably large part of the region between x
and y”.

4. 0-wslice but not slice

Here we give an example of a 0-wslice domain that is not a slice domain, thereby
resolving Open Problem C in [9]. Simpler examples with related properties can
be found elsewhere. Specifically, Proposition 4.5 of [8] allows one to construct
examples of α-wslice domains, α > 0, that are not slice domains; in fact, they
are not even 0-wslice domains. A one-sided 0-wslice domain (meaning that
(WS-3) is assumed for arbitrary x and a fixed y) that is not a one-sided slice
domain is given in [3, Example 4.9]. However, examples similar to these cannot
lead to a (two-sided) 0-wslice domain that is not a slice domain.

Example 4.1. Our domain G ⊂ R2 is (0, 1)2 ∪
(

⋃∞
j=1 Dj

)

, where the

sets Dj are “decorations” attached to the right-hand side of the unit square,
centered at (1, aj). To define Dj , we begin with a pair of rectangles of length Rj
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and width 4rj glued together via a pair of bent strips of vertical width 2rj that
border an omitted square of sidelength

√
2Rj with sides at angle 45 degrees to

the x1-axis, as in the diagram above. We then remove two closed sets. The first
removed set is the horizontal midline segment Lj that begins at the right-hand
side of our decoration and ends at a distance 2rj from the left-hand side; this
effectively makes the set into a union of an upper and a lower corridor, both
with three 45 degree bends. Finally, we remove a bent U-shaped set Uj which
follows the (horizontal and diagonal) midlines of the upper and lower corridors
and whose points have x1-coordinates between 1+ rj and 1+4Rj − rj. Thus in
our final decoration Dj , there are four long bent corridors, each of vertical width
rj and with x1-coordinates between 1 + rj and 1 + 4Rj ; we call these the first,
second, third, and fourth corridors in order of increasing y-values. The exact
values of aj , Rj , and rj are irrelevant as long as the decorations are pairwise
disjoint and 4 ≤ Rj/rj → ∞ as j → ∞; we could for instance pick aj = 2−j ,
Rj = 4−j−1, and rj = 8−j−1.

The proof that G is a (0, 10)-wslice+ domain is a rather lengthy case analysis
similar to those in [10, Section 3], [3, Section 4.7], and [4, Theorem 3.6], so we
merely mention the distinctive features of the proof. The most interesting pairs
of points y = (y1, y2) and z = (z1, z2) are those that are fully contained in a
single decoration Dj , and which do not lie close to the boundary of the domain
in the sense that δG(y), δG(z) ≥ rj/4. For such points, the slices we use are
one of the following four types of slices that we collectively refer to as corridor
slices. Letting Nj = ⌊Rj/rj⌋, we split the part of Dj between the coordinate
values x1 = 1+2rj and x1 = 1+Rj into Nj left slices like Sl all of equal width in
the first coordinate (see Figure 3.1). We similarly split the part of Dj between
x1 = 1 + Rj and x1 = 1 + 3Rj into 2Nj upper slices like S+, and 2Nj lower
slices like S−. Finally, we similarly split the part of Dj between x1 = 1 + 3Rj

and x1 = 1 + 4Rj − rj into Nj right slices like Sr.

A (0, 10)-wslice+ inequality trivially holds when k(y, z) ≤ 20, so we may
assume that k(y, z) > 20. Suppose y, z both lie in the fourth corridor, and by
symmetry we assume that y1 ≤ z1. Then we take as our admissible set all left,
upper, and right slices that lie in the set [y1 + rj , z1 − rj]× R, accompanied by
their diameters. Note that since k(y, z) ≥ 20 and δG(y), δG(z) ≥ rj/4, it follows
that z1 ≥ y1 +9rj , and it is readily verified that the chosen slices form a (0, 10)
wslice+ dataset. As a hint note that the horizontal line segment that runs
through a left or right slice along the middle of a corridor has quasihyperbolic
length 1. The same argument works for the other corridors, except that we use
lower slices in place of upper slices for the first and second corridors.

If y, z lie in the third and fourth corridors, respectively, we similarly get a
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(0, 10) wslice+ dataset by taking all right slices that lie in the set [y1∧z1,∞)×R

and that do not contain points within a distance rj of y or z. If y, z lie in the
second and fourth corridors, respectively, then we know that k(y, z) ≈ Nj , and
we get a (0, 10)-wslice+ dataset by taking all left and all right slices that do not
contain points within a distance of rj of y or z. All other possibilities are like
one or the other of these last two cases.

Note that some or all upper and lower slices can be added to the wslice+

dataset for certain choices of pairs y, z, but not if y, z are positioned badly. For
instance if y, z lie in the third and fourth corridors, respectively, and y1 ∨ z1 ≤
1 + Rj , then for every upper or lower slice S, there is a path from y to z that
avoids S. This problem with “slicing up” the middle part of Dj is precisely
what makes every slice condition fail, an argument that we now make more
precise.

Suppose {Si}m
i=0 is a set of C-slices for the pair of points z := (1 + Rj , aj +

rj/2), y := (1 + Rj, aj + 3rj/2), with γ ∈ ΓG(yj, zj) being the associated
path. Then γ has to contain a point u with first coordinate 1 + 2Rj in either
the first or fourth corridor. Since k(u, {y, z}) tends to infinity as j tends to
infinity, u ∈ ⋃m

i=1 Si if j is sufficiently large. Suppose therefore that u ∈ Si.
Since there is a path from y to z that stays a distance greater than Rj from
u, it follows from (WS-1) that di > Rj . The slice property now ensures that
δG(u) ≥ di/C > Rj/C, contradicting the fact that δG(u) < rj when j is
sufficiently large. Thus G is not a slice domain.

Open Problem A. Find a domain Ω ( Rn which is an inner 0-wslice
domain, but not a slice domain. More generally, one could ask for any example
of a length space which is an inner 0-wslice space but not a slice space.

The above problem is posed because the authors feel that slice-type condi-
tions, and the relationships between them, are more subtle when the underlying
metric is a length metric. Note that the previous example does not work since
the corridor slices almost all have inner Euclidean diameter much larger than
their Euclidean diameter, and so inequality (WS-1) of the inner (0, C)-wslice
fails when j is sufficiently large.

5. β-wslice but not α-wslice

Suppose 0 ≤ α < β < 1. Theorem 4.1 of [9] tells us that for domains of
product type, the inner β-wslice+ property is equivalent to the so-called inner
β-mCigar property. By taking the product of an interval with Lappalainen’s
rather complicated examples of domains that are β-mCigar but not α-mCigar
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Figure 5.1: The left part of Dj when R′
j > Rj and r′j > rj

[14, 6.7], we therefore get domains that are (inner) β-wslice+, but not (inner)
α-wslice+, whenever 0 ≤ α < β < 1. In Open Problem B of [9, Section 6], the
authors ask if an α-wslice+ domain must necessarily be a β-wslice+ domain if
0 ≤ α < β < 1.

In this section, we answer this open problem by means of a counterexam-
ple similar to Example 4.1. Another variation of this construction will give
a domain that is β-wslice+, but not α-wslice+, and is much simpler than the
product type domains mentioned above.

Our first two counterexamples have the form G := (0, 1)2 ∪
(

⋃∞
j=2 Dj

)

,

where each attached decoration Dj is similar to the ones in Example 4.1, the
only essential difference being that the horizontal rectangular parts of Dj are
of width 4r′j and length R′

j . These altered parts are either longer and fatter,
or shorter and thinner, than before, while the diagonal parts have the same
dimensions as before. The wider corridors are pinched using linear interpolation
near where they meet narrower corridors. The following pair of diagrams of the
leftmost part of Dj should suffice to make more precise what we mean.

Let us take Rj := 2−jp, R′
j := 2−jp′ , rj := 2−jq, r′j := 2−jq′ , where the

quadruple (p, q, p′, q′) is allowable if 0 < p ≤ q − 2, 0 < p′ ≤ q′ − 2, p ≥ 2, and
q′ ≥ 2; the last two bounds are assumed merely to ensure that we can attach
all these decorations to one side of the unit square without overlap. The exact
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Figure 5.2: The left part of Dj when R′
j < Rj and r′j < rj

locations of the decorations, i.e. the values of aj, are irrelevant as long as they
do not overlap.

Theorem 5.1. Given 0 < α0 < 1, any allowable choice of p, p′, q, q′ with
p′ = p + 1 − α0 and q′ = q + 1 gives a domain G which is an α-wslice+ domain
for α ≤ α0, but not an α-wslice domain for α > α0.

Sketch of proof. Writing N ′
j = ⌊R′

j/r
′
j⌋ and Nj = ⌊Rj/rj⌋, we define corridor

slices as in Example 4.1, so that there are N ′
j left slices between x1 = 1 + 2r′j

and x1 = 1+ R′
j − r′j , 2Nj upper and 2Nj lower slices between x1 = 1+ R′

j and
x1 = 1 + R′

j + 2Rj , and N ′
j right slices between x1 = 1 + R′

j + 2Rj + r′j and
x1 = 1+2R′

j +2Rj − r′j. In this proof, A ≪ B means that A/B → 0 as j → ∞.

Note that the dα,G-length of the (horizontal or diagonal) line segment given
by the intersection of a single corridor slice with the midline of that corridor is
comparable with rα

j for an upper or lower slice S, and (r′j)
α for a left or right

slice S. For some pairs of points y, z, the (α,C)-wslice+ defining inequality
holds using a similar argument to that in Example 4.1 once we pick C = C(α)
to be large enough. However this method fails in other cases. The basic obstacle
is revealed by taking y = (1 + R′

j/2, aj + 3r′j/2) and z = (1 + R′
j/2, aj + r′j/2).
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Then all paths from y to z have to go through complete horizontal and diagonal
parts of at least two corridors, and so it follows that dα(y, z) ≈ Lj,α+L′

j,α, where

Lj,α := Rj/r
1−α
j and L′

j,α := R′
j/(r

′
j)

1−α. We cannot use upper or lower slices
in any admissible set for y, z since there always exist connecting paths that
avoid any given set of this type, but the set of all right slices S (paired with
their diameters dS) always gives a 10-admissible set. Denoting by F the set of
such right slices, we see that

∑

S∈F dα
S ≈ L′

j,α. Since

1

j
· log2

(

Lj,α

L′
j,α

)

= p′ − p − (1 − α)(q′ − q) = α − α0,

we see that W0 := {(S,diam(S) | S ∈ F} is an (α,C)-wslice+ dataset for
appropriate C = C(α) as long as α ≤ α0, as required. However, W0 fails to be
an (α,C)-wslice+ dataset when α > α0 since then L′

j,α ≪ Lj,α.
Given α ∈ (α0, 1), it remains to show that there are no (α,C)-wslice datasets

for the pair y, z, assuming that j is sufficiently large. Suppose for the sake
of contradiction that W := {(S, dS) | S ∈ F} is some (α,C)-wslice dataset
and write Σα :=

∑

S∈F dα
S . Since δα(y) + δα(z) ≈ rα

j ≪ Lj,α, it follows that
Σα ≈ dα(y, z) ≈ Lj,α. Using (WS-1) and the geometry of the domain, we see
that any slice that includes points outside Dj has diameter larger than R′

j/2.

Furthermore, if mi is the number of such slices S for which dS ∈ (2i−1R′
j, 2

iR′
j ],

then (WS-1) and the fact that there are paths from y to z of length comparable
to Rj together imply that mi <∼ 2−iRj/R

′
j . By summing the resulting series

over the index i, we see that the contribution of all such slices to Σα is at most
comparable with Aj := Rj/(R

′
j)

1−α, and Aj ≪ Lj,α because p′ = p+1−α0 < q.
We can therefore delete these slices from our dataset and our redefined set W
is still an (α,C)-wslice dataset (if we suitably redefine C).

Consider next from the remaining slices those that do not enter into any
diagonal corridor by a distance more than R′

j from the base (meaning the left
and right ends of the diagonal corridors of Dj). We let λ temporarily denote
the path in ΓG(y, z) that runs along the U-shaped mid-corridor path on the
right. Since the intersection of λ with the slices under present consideration
can have length at most comparable to R′

j , it follows that the number mi of

such slices S for which dS ∈ (2ir′j , 2
i+1r′j] is at most comparable to 2−iR′

j/r
′
j .

Since any such slice has diameter at least comparable to r′j, it follows that the
contribution of such slices is at most comparable to L′

j,α ≪ Lj,α.
It remains to consider the slices which lie in Dj , and enter into at least

one diagonal corridor by a distance exceeding R′
j from the base. Let mi be

the number of such slices S for which dS ∈ (2iR′
j, 2

i+1R′
j ]. Now such slices
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must include points that are a distance at most comparable with 2iR′
j from

the base, since if all points in such a slice are much further than this from the
base then the slice cannot contain points in both the upper and lower pair of
corridors and so cannot separate the pair y, z, contradicting (WS-1). We deduce
that such slices are fully contained within a distance comparable to 2iR′

j of the
base, and so the intersection of λ with such slices can have length at most
comparable to 2iR′

j . It follows that mi <∼ 1. In order to accommodate all such
slices, the index i need only run up to the value log2(Rj/R

′
j). Consequently, we

may estimate the contributions of these remaining slices with the upper bound:
∑log2(Rj/R′

j
)

i=0 1 · (2iR′
j)

α ≈ (R′
j)

α
∑log2(Rj/R′

j
)

i=0 2αi ≈ (R′
j)

α(Rj/R
′
j)

α ≈ Rα
j . But

this is much smaller than Lj,α when j is large and so we get a contradiction.

The above construction is quite flexible: it can be varied to give examples
with various other types of behavior. We content ourselves below with three
variants, but first let us define α(D), the α-set of a domain D ( Rn, to be
the set of all α ∈ [0, 1) for which a given domain D is an α-wslice domain.
Theorem 5.1 shows that there are domains G with α(G) = [0, α0] for each
0 < α0 < 1. By varying some of the details in the definition of G, we now get
some other α-sets. We omit the details of the proofs which are all similar to
that of Theorem 5.1.

The first of our three examples allows us to get the same α-sets as the
product-type examples mentioned at the beginning of this section, but is much
simpler. Our second example shows that the endpoint of our α-set can be
omitted, and the third shows that α-sets need not be intervals.

Example 5.2. If 0 < α0 < 1, then any allowable choice of p, p′, q, q′ with
p = p′ + 1 − α0 and q = q′ + 1 gives a domain G with α(G) = [α0, 1).

Example 5.3. If we redefine rj := j2−jq in Theorem 5.1, but leave
everything else unchanged, then α(G) = [0, α0). The key fact is that when
α = α0, we now have Lj,α/L′

j,α → ∞ as j → ∞.

Example 5.4. Consider a domain with decorations Dj similar to those of
Theorem 5.1, but with two rectangular parts on both sides of the diagonal part.
The diagonal part and the innermost pair of rectangular parts of Dj are identical
in shape to the full decoration Dj of Theorem 5.1 with the exception that we
must alter Uj and Lj so that they also pass through the outer rectangular
parts, which have length R′′

j := 2−jp′′ and width 4r′′j := 4 · 2−jq′′ . These outer
parts are chosen to be longer and fatter than the inner rectangular parts and
are connected by linear interpolation to the inner parts as before. By choosing
p′ = p+1−α0 and q′ = q+1, and p′′ = p−1+α1 and q′′ = q−1, 0 < α0 < α1 < 1,
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it follows that α(G) = [0, α0] ∪ [α1, 1).

By taking (p, q) = (3, 6) and (p′, q′) = (p, q)±(1−α0, 1) for some α0 ∈ [0, 1),
it is clear that (p, q, p′, q′) is always allowable. This allows us to consider do-
mains consisting of a sequence of decorations Dj joined to the unit square that
generalize the above constructions. Each Dj has diagonal corridors specified by
the dimensional parameters Rj := 2−3j and rj := 2−6j , and Dj also has one or
more horizontal corridors on each side of these diagonal corridors, symmetrically
distributed around the center of the diagonal corridor: if the ith horizontal cor-
ridor on the left counting outwards from the diagonal corridor has dimensional
parameters Rj,i := 2−jpj,i and rj,i := 2−jqj,i , then the ith horizontal corridor on
the right is defined by these same parameters. Here (pj,i, qj,i)− (3, 6) is always
±(1− αj,i, 1) for some 0 < αj,i < 1. The corridors are joined by linear interpo-
lation as before. We call these corridor decorations and we call the domain Ω
obtained by joining a sequence of such corridor decorations a decorated square
(with corridor decorations (Dj)

∞
j=1).

It is not hard to show that the sets α(Ω) for the set of decorated squares
Ω, are closed under countable intersections and finite unions. Let us justify
this first for intersections. Suppose (Ωk)

∞
k=1 is a sequence of decorated squares

with corridor decorations (Dk,j)
∞
j=1. It is routine to show that we can define a

decorated square Ω with corridor decorations (Di)
∞
i=1, where Di := Dki,ji

for
some appropriate choice of ki, ji, such that α(Ω) =

⋂∞
k=1 α(Ωk).

As for finite unions, if we have a finite set of decorated squares Ωk, k =
1, . . . , k0, with corridor decorations (Dk,j)

∞
j=1, then we take our cue from Ex-

ample 5.4: for fixed j, we join together the horizontal corridors of each Dk,j,
k = 1, . . . , k0, as we did in Example 5.4 to get a new decoration Dj. The dec-
orated square Ω with corridor decorations (Dj)

∞
j=1 then has the property that

α(Ω) =
⋃k0

k=1 α(Ωk).

The above constructions suggest that every Borel subset of [0, 1) may well
be of the form α(G) for some bounded domain G ⊂ Rn. However we do not
know if this is so.

As pointed out at the start of this section, there are domains in Rn which
are inner β-wslice+ but not inner α-wslice+ whenever 0 ≤ α < β < 1. However
none of our decorated examples above are inner α-wslice domains, so they
cannot answer the following problem.

Open Problem B. Given 0 ≤ α < β < 1, is there a domain in Rn which
is inner α-wslice+ (or even just α-wslice) but not β-wslice+? More generally,
one could ask for any example of a length space which is inner α-wslice+ (or
even just α-wslice) but not β-wslice+.
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Dept. Math. Stat., 92 (2003), 63–76.

[4] S.M. Buckley, Quasiconformal images of Hölder domains, Ann. Acad. Sci.
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