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Chapter 5:  Counting 
Techniques, Combinatorics, 
and Generating Functions 
 
 
 
 
 
In discrete mathematics problems, one often needs to know how many (or 
approximately how many) objects belong to a certain set.  Such counting problems 
may be interesting in their own right, or constitute an integral part of the solution 
to another problem.   Many important and difficult problems in probability 
(Chapter 6) amount to counting problems.  The counting techniques that we learn 
in this chapter will also be useful in assessing and comparing the speeds of 
algorithms, where it is required to get rough estimates of how many 
logical/arithmetical operations need to be performed in the execution of an 
algorithm (usually as a function of the input size).   This latter application of 
counting methods is known as the complexity theory of algorithms, and will be 
studied in Chapter 7.  After introducing an assortment of useful counting methods 
in Sections 5.1 and 5.2, Section 5.3 will discuss the theory of generating functions.  
Every sequence has a (unique) generating function.  Generating functions are a 
powerful tool that often allow difficult or seemingly intractable counting problems 
to be translated into much simpler questions by translating a combinatorial 
question into a corresponding question about an appropriately formulated 
generating function.    
   

5.1:  FUNDAMENTAL PRINCIPLES  OF 
COUNTING 
 
The subject of sophisticated counting methods has evolved into an important 
branch of mathematics called combinatorics.  In this and the next section we will 
introduce some of the central ideas of combinatorics that frequently arise in 
discrete structures.  Since students often have difficulty remembering how and 
when to apply some of these methods, we will motivate several key principles by 
examples.  Keeping a collection of such examples in mind for comparisons and 
contrasts will help the reader in deciding what principles are applicable in order to 
solve various problems.   We first introduce some notation for the number of 
elements in a finite set. 
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NOTATION:   If S is any finite set, the symbol | |,S  which can be read as the 
cardinality of S, denotes the number of elements in the set S.   
 
The Multiplication Principle 
 
EXAMPLE 5.1:  (Motivating example for the multiplication principle)  Arlo 
packs three shirts, two ties, and three pairs of pants for a business trip.  How many 
different outfits can Arlo put together during this trip? Assume that an outfit 
consists of one choice each of a shirt, tie, and a pair of pants, and that any 
differences in the choices lead to different outfits. 
 
SOLUTION:  One approach is to represent the sequence of choices by a so-called 
tree diagram;1    such a diagram is shown in Figure 5.1.  Notice that each outfit 
corresponds to a unique sequence of choices of a shirt (from S1, S2, and S3), tie 
(from T1 and T2), and pants (from P1, P2, and P3), and this in turn corresponds to 
a unique path down the tree, which is completely determined by where it lands on 
the bottom.  Notice that at the end of each stage, total number of choices is the 
number from the previous stage multiplied by the number of choices available at 
the current stage.  Thus we have shown that Arlo is able to put together a total of 
3 2 3 18⋅ ⋅ = outfits.  
 

 
 

FIGURE 5.1:  A tree diagram for the counting problem of Example 5.1.  To put together an 
outfit, we start at the top (root) of the tree, and first choose one of three shirts {S1, S2, S3}, 
next we choose a tie from {T1, T2}, and finally we choose a pair of pants from {P1, P2, 
P3}.  Each path from top to bottom represents a different permissible outfit, and no other 
outfits can be put together. 
  
Using a set theoretic approach, the outfits can be viewed to correspond to elements 
in the Cartesian product ,S T P× ×

 
1 We will give a more formal development of trees (tree diagrams) in Chapter 8.  For now we treat the 
concept as an intuitive one.   



5.1:  Fundamental Principles of Counting 313 
 

| |S T P× × = | | | | | |,S T P⋅ ⋅  we have another way to count the different outfits.  
 
PROPOSITION 5.1:  If 1 2, , , kS S S are finite sets, then the cardinality of their 
Cartesian product  1 2 kS S S× × ×  (see Section 1.3) is given by:   

1 2 1 2| | | | | | | | .k kS S S S S S× × × = ⋅ ⋅ ⋅   
 
Proof:  We use induction on k.  
1.  Basis Step:  The identity simply states that  1 1| | | | .S S=  
2.  Inductive Step:   Assuming that 1k ≥ and the identity is true for k factors, we 
need to show it is valid for k + 1 factors.   Write out the elements of the last factor 

1kS +  as 1 2{ , , , },Na a a  so that 1| | .kN S +=   Now the elements of 

1 2 1k kS S S S +× × × ×  fall into N disjoint subsets, 1 2, , , ,NT T T  depending on their 
last entry (of the 1kS + factor).  Therefore, for 1 ,j N≤ ≤  we can write 
 

1 2 ,1{( , , , , ) | [ ]}.j k j i i k i iT s s s a s S≤ ≤= ∀ ∈  
The elements of each of these jT ’s are thus in one-to-one correspondence with the 
elements of 1 2 ,kS S S× × ×  so by the inductive hypothesis, we have for each 
index  j, that  1 2 1 2| | | | | | | | | | .j k kT S S S S S S= × × × = ⋅ ⋅ ⋅    Since there are  

1| |kN S +=  jT ’s, and they are disjoint, it follows that 1 2 1| |k kS S S S +× × × × =  

1 2 1 2 1 2 1| | | | | | | | | | | | | | .N k kT T T N S S S S S S +∪ ∪ ∪ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅       
 
Either of the two methods of the above example works easily to establish the 
following more general principle: 
 
THE MULTIPLICATION PRINCIPLE:  Suppose that a sequence of choices is 
to be made and that there are 1m options for the first choice, 2m  options for the 
second choice, and so on, up to the kth choice.  If these choices can be combined 
freely, then the total number of possible outcomes for the whole set of choices is 

1 2 .km m m⋅ ⋅ ⋅  
 
The multiplication principle is extremely useful.  To apply it to a counting 
problem, one must be able to recast the problem at hand into a sequence of 
unrestricted choices.  The following examples will demonstrate this technique. 
 
EXAMPLE 5.2:    A  standard  Hawaii  license  plate consists of a group  of  three 
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letters followed by a group of three digits; see 
Figure 5.2.   
(a)  How many (standard) Hawaii license plates 
can the state produce? 
(b)  If on the island of Maui, the first letter of the 
plate must be “M,” how many (standard) Maui 
plates can be produced? 
 
SOLUTION:  Part (a):  We view creating a 
Hawaii plate as making a sequence of six unrestricted choices; for each letter slot 
we have 26 choices, while for the digit slots we have 10 choices.  Hence, by the 
multiplication principle, the total number of Hawaii plates will be 
26 26 26 10 10 10 17,576,000.⋅ ⋅ ⋅ ⋅ ⋅ =  
Part (b):  Since the first letter is already specified, making a Maui plate can be 
viewed as a sequence of five choices, with the total number being 2 326 10⋅ =  
676,000.   
 
EXAMPLE 5.3:  A three-member committee is to be formed from the US Senate, 
which has 100 members (2 from each state).  The committee will have a 
chairperson, a vice-chair, and a spokesperson.   
(a)  How many different such committees can be formed? 
(b)  How many if Senator A must be on it? 
(c)  How many if Senators B and C will serve together or not at all? 
 
SOLUTION:  Part (a):  We break up the formation of the committee into the 
following sequence of three choices:  first choose a chair (100 senators to choose 
from), next, after a chair has been chosen, choose a vice-chair (from the 99 
senators remaining), finally, from the 98 senators remaining, we choose the 
spokesperson.2  The multiplication principle tells us that there can be a total of 
100 99 98 970,200⋅ ⋅ = such committees. 
 

Part (b):  We give two different methods: 
 

Method 1:  (Separate into disjoint cases first)  We have learned early on in the last 
chapter that problems can often be reduced to simpler ones using cases.  For the 
problem at hand there are three natural cases: A serves as chair, vice-chair, or 
spokesperson.  These three cases are disjoint (no matter how the rest of the 
committee is formed).  (Why?)  Using the multiplication principle to fill the 
remaining slots, by disjointness, we may add up the results to get the answer to 
Part (b):  1 99 98 99 1 98 99 98 1 3 99 98 29,106⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅ =  (the factor 1 in each of 
the three terms represents that there is only one choice for the corresponding slot, 
since Senator A will occupy that slot in each case).  
 

 

 
2 Of course, this method of choosing a committee has no bearing on the process of how the Senate 
might actually put together such a committee (usually by nominations and voting); we cast the task as a 
sequence of choices solely as a mathematical device to solve the counting problem.   

 
 

FIGURE 5.2:  A standard 
Hawaii license plate. 
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Method 2:  (Use the multiplication principle directly): 

places to put choices to fill choices to fill
Senator A first remaining second remaining

        slot         slot

3 99 98⋅ ⋅  

Part (c):  Separating into the two natural cases:  (i)  neither B nor C serves, and (ii) 
both B and C serve (which give rise to disjoint sets of committees) seems like the 
only way to go here.  Each of the two cases is amenable to the multiplication 
principle:   

 positions choices for   choices for choices for the positions choices for the
for Cthe chair the vice-chair spokesperson for B remaining position

neither B nor C serve both B and C s

98 97 96 3 2 98⋅ ⋅ + ⋅ ⋅



erve

913,164.=



 

 
EXERCISE FOR THE READER 5.1:  A professional basketball team is arranging 
a publicity photograph with 5 players taken from its active list of 12 players.   
(a)  If the players are to be lined up in a row, how many different photograph 
arrangements are possible?  
(b)  How many such arrangements are possible if players K and S refuse to appear 
in the lineup together?  
 
The multiplication principle has both practical and theoretical utility.  We use it 
next to give a proof of an important fact that was mentioned in Section 1.3 (recall 
that we also gave a proof of this result in Section 3.1 using mathematical 
induction, see Proposition 3.3).   
 
PROPOSITION 5.2:  A set S with a finite number n of elements has 2n  subsets. 
 
Proof:  We list the elements of the S as 1 2{ , , , }.na a a   We can view the 
formation of a subset B S⊆  as a sequence of n choices, the ith choice being 
whether to include the element ia  in the subset B.  Since each of these n steps has 
two choices (i.e., either ia B∈ or ),ia B∉  it follows from the multiplication 
principle that there are a total of 

factors

2 2 2 2n

n

⋅ ⋅ ⋅ =



 subsets of S.   □  

 
The Complement Principle 
 
Another simple yet often useful rule is a consequence of the basic fact that for any 
subset S U⊆ (the universal set), U is the disjoint union of S and its complement 

.S   If U is a finite set, this implies that | | | | | |U S S= + ⇒  
| | | | | |.S U S= −   We reiterate this in words: 

 
THE COMPLEMENT PRINCIPLE:  Suppose the universal set is finite.  The 
number of elements in a set equals the number of elements in the (finite) universal 
set, less the number of elements that are not in the set.  
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EXAMPLE 5.4:  For security reasons, a university’s finance office requires 
students to create a six-character password to log into their accounts.  Passwords 
must contain at least one digit and at least one letter.   
(a)  How many passwords are possible if the protocol is not case-sensitive? 
(b)  What if the protocol is case-sensitive? 
 
SOLUTION:  Let D denote the set of all six character strings that contain at least 
one digit, and L the set of all six character strings that contain at least one letter. 
We wish to count the number of passwords in the set .D L∩    The sets D and L 
are difficult to count directly, but their complements are easy.  For example, D  
is the set of all six character passwords that contain no digits, and therefore consist 
only of letters.   By the multiplication principle, the number of such passwords is 

626 for Part (a) and 652 for Part (b).   In the same fashion,  6| | 10L =  (for both 
Parts (a) and (b)).  Also, letting S denote the (universal) set of all six character 
passwords, the multiplication principle gives that 6| | 36S =  for Part (a) and 

6| | 62S =  for Part (b).   
The complement principle and then De Morgan’s law allow us to write  
 

| | | | |~ ( ) | | | |~ |.D L S D L S D L∩ = − ∩ = − ∪  
 

Now, (fortunately) the sets D  and L  are disjoint, so |~ |D L∪ =  
|~ | | | .D L+    We now have all the information we need to answer the questions: 

 

Part (a):  | |S − (|~ | | |)D L+   = 6 6 6 936 26 10 1.86687 10 .− − ≈ ×  
Part (b):  | |S − (|~ | | |)D L+   = 6 6 6 1062 52 10 3.70286 10 .− − ≈ ×    
(Certainly either protocol should be sufficient to accommodate any university.) 
 
The Inclusion-Exclusion Principle 
 
When counting elements in unions of sets that are disjoint, one simply can add up 
the numbers of elements of the individual sets.  In cases of nondisjoint sets, one 
needs to be more careful. 
 
THE INCLUSION-EXCLUSION PRINCIPLE:  (a)  (For two sets)  If A and B 
are finite sets, then | | | | | | | | .A B A B A B∪ = + − ∩   
(b)   (For three sets)  If A, B, and C  are finite sets, then 
 | | | | | | | | | | | | | | | | .A B C A B C A B A C B C A B C∪ ∪ = + + − ∩ − ∩ − ∩ + ∩ ∩   
(c)   (General case)  If 1 2, , , nA A A is a collection of finite sets, then 
 

1 2
1 2

1 2
1 2

1 2
1

1

1
1 2

| | | | | |
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In this identity, we start off by adding the numbers of elements in each set, then 
subtract the numbers of elements in each possible intersection of two of the sets, 
then add the numbers of elements in all possible intersections of three of the sets, 
and so on.   
 
We point out that in the special case in which the sets are pairwise disjoint, i.e. 

[ ],i ji j A A∀ ≠ ∩ = ∅  all of the intersection cardinalities are 0s, so formula (1) 
simply becomes 1 2 1 2| | | | | | | | .n nA A A A A A∪ ∪ ∪ = + + +    We have already 
used this simple formula when we broke counting arguments into disjoint cases 
(see the solution of Example 5.3(b), for example).  We caution the reader to be 
extremely careful to resist using this tempting formula, unless he/she is absolutely 
certain that the needed pairwise disjointness requirement is satisfied.  
 
Proof:  We give different proofs for each Part (a) and (b).  We prove Part (a) 
directly and analytically, whereas for Part (b), we use Venn diagrams and go at it 
sequentially.  The reader might wish to supply the alternative proof for each part.   
 

Part (a):  We can express A as the disjoint union of A B  and .A B∩   
Consequently, | | | | | | .A A B A B= + ∩   In the same fashion, | | | |B B A= +  
| | .A B∩   But A B∪  is the disjoint union of the three sets , ,A B B A   and 

.A B∩   This yields | | | | | | | | .A B A B B A A B∪ = + + ∩    Comparing these 
three equations produces the desired result.   
 

Part (b):   We use  | | | | | |A B C+ +  as our naïve “first approximation” to 
| |.A B C∪ ∪   If we draw a Venn diagram to see how many times each constituent 
portion is counted, we arrive at the picture in Figure 5.3(a), where we put an 
integer in each portion to indicate how many times it was counted in 
| | | | | | .A B C+ +   Our goal is to have each portion counted exactly once.  The 

two set intersection portions are all counted  twice (except for the three-set portion 
in the middle),  so as our next approximation, we subtract off the counts of all two-
set intersections:  | | | | | | | | | | | | .A B C A B A C B C+ + − ∩ − ∩ − ∩  This second 
approximation gives the modified counts shown in Figure 5.3(b).   All of the 
portions of the Venn diagram are fine, except for the central portion, 
corresponding to where all three sets intersect.  The count for this portion is now 
zero.  This is easy to compensate for—we simply need to add | |A B C∩ ∩  to get 
our final approximation, which is the asserted inclusion-exclusion formula for 
three sets.  Figure 5.3(c) shows that we now have the desired counts (=1) on all 
portions of the Venn diagram.    
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FIGURE 5.3:  Proof of the inclusion-exclusion principle for three sets, in three steps.  (a) 
(left) the initial approximation for | |A B C∪ ∪ counts some regions twice and one region 
three times, (b) (middle) the compensated approximation counts all regions once except for 
the central region,  (c) (right) the final approximation counts all regions correctly.  
 
 

Part (c):  Equation (1) can be proved by mathematical induction (Exercise 31), but 
a more elegant proof can be given with the material developed in the next section 
(Exercise for the Reader 5.10).   □ 
 
EXAMPLE 5.5:  A university mathematics department has 75 applied 
mathematics majors, 50 pure mathematics majors, and 32 mathematics education 
majors.  Of these students, there are 17 who list both pure and applied math as 
their majors,  13 and 11 who list math education and pure, or applied math, 
respectively, and finally there are five triple majors.  How many math majors are 
there?   How many of these are only majoring in applied math? 
 
SOLUTION:  The reader is encouraged to draw a Venn diagram for this problem. 
With the obvious notation, we are given that | | 75, | | 50, | | 32,A P E= = =  
| | 5, | | 17, | | 13,A P E A P E P∩ ∩ = ∩ = ∩ = and | | 11.E A∩ =   The 
inclusion-exclusion principle for three sets now gives us the total number of math 
majors | |A P E∪ ∪  to be 75 + 50 + 32 – (17 + 13 + 11) + 5 = 121.   To get the 
number of students who are majoring only in applied mathematics ( ( )),A P E∪  
we subtract from the total number 75 of applied math majors those who are double 
majors with pure math ( | | | |A P A P E∩ − ∩ ∩ = 17 – 5 =) 12, those who are 
double majors with math education ( | |A E∩ −  | |A P E∩ ∩  = 11 – 5 = ) 6, and 
the five who are triple majors ( ).A P E∩ ∩   This gives us 75 – 12 – 6 – 5 =  52 
students who are single majors in applied mathematics.    
 
EXAMPLE 5.6:  How many positive integers less than 2009 are divisible by none 
of 3, 4, or 10? 
 
SOLUTION:  We first introduce some convenient notation.  For each positive 
integer n, we let nD

4D =    Clearly | |nD =  
2008/ .n     Also, since an integer a is divisible by both n and m if, and only if a is 

| |A B C+ ∩ ∩| | | | | |A B C+ + | | | | | |A B A C B C− ∩ − ∩ − ∩
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divisible by the least common multiple of n and m (= lcm(n,m)), we may conclude 
that lcm( , ) ,n m n mD D D∩ =  and also lcm( , , ) .n m k n m kD D D D∩ ∩ =    
 
The problem is to find 3 4 10| | .D D D∩ ∩     By De Morgan’s law, this number 
is the same as 3 4 10| ( ) |,D D D∪ ∪  and by the complement principle, this number 
equals 2008 – 3 4 10| | .D D D∪ ∪    From the facts mentioned above and the 
inclusion-exclusion principle, we may now easily perform the needed 
computations.  We first find the three single set counts: 
 

3 4 10| | 2008/3 669, | | 2008/4 502, | | 2008/10 200.D D D= = = = = =            
 

Next we compute the three double-set counts, 
 

3 4 12 3 10 30

4 10 20

| | | | 2008/12 167, | | | | 2008/30 66,
| | | | 2008/20 100,

D D D D D D
D D D

∩ = = = ∩ = = =      
∩ = = =  

 

 

and, finally, the single triple-set count:   
 

3 4 10 60| | | | 2008/60 33.D D D D∩ ∩ = = =    
 

Invoking the inclusion-exclusion principle allows us now to arrive at the answer: 
 

2008 – 3 4 10| | 2008 (669 502 200) (167 66 100) 33 937.D D D∪ ∪ = − + + + + + − =     
 
This result can be easily verified using a simply programmed computer loop, and 
readers are encouraged to perform such a check. 
 
EXERCISE FOR THE READER 5.2:  How many positive integers less than 3601 
are divisible by at least one of 2, 3, 5, or 11? 
 
EXERCISE FOR THE READER 5.3:  How many Hawaiian license plates (see 
Example 5.2) do not contain any of the strings, “CIA,”  “FBI,”  or “GOD?” 
 
 
 
The Pigeonhole Principle 
 
Our next principle, known as the pigeonhole principle, will probably seem so 
intuitively obvious that it is hardly worth mentioning.  Along with its 
generalization, the pigeonhole principle turns out to be quite a useful tool. 
 
THE PIGEONHOLE PRINCIPLE:  If there are more than k pigeons placed into 
k pigeonholes, then there must be at least one pigeonhole with more than one 
pigeon occupying it (see Figure 5.4).   
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FIGURE 5.4:  Illustration of the pigeonhole principle with k = 3 pigeonholes:  if there are 
more pigeons (here four) roosting in the pigeonholes than there are pigeonholes, then at 
least one pigeonhole must have more than one pigeon.   
    
The proof of the pigeonhole principle is an easy proof by contradiction.  If every 
pigeonhole has at most one pigeon in it, then the total number of pigeons would 
have to be less than or equal to the number of pigeonholes, which is k, a 
contradiction to the fact that there were supposed to be more pigeons than 
pigeonholes.   
 
We first give an example of some rather basic consequences of the pigeonhole 
principle and then proceed to give some more surprising applications. 
 
EXAMPLE 5.7:  (a)  If a company has 1000 employees, it must have at least two 
employees who share the same birthday.  This follows from the pigeonhole 
principle with the k = 366 possible birthdays being the pigeonholes, and the 1000 
(> k) employees serving as the pigeons.   (We really needed only 367 employees 
for this to be true.) 
 

(b)  If Joey works at Vitali’s restaurant 20 evenings in March and Vivian works 
there 12 evenings in March then they must share at least one common evening of 
work.  This follows from the pigeonhole principle with the pigeonholes being the 
31 – 20 = 11 days that Joey does not work and the pigeons being the 12 days that 
Vivian works.  If there were no overlap, one of the pigeonholes would have two 
pigeons, i.e., this would mean that Vivian was working twice in the same evening.  
This is clearly impossible, so Joey and Vivian must indeed share a shift. 
 
EXAMPLE 5.8:  If seven points are randomly selected on (the circumference of) 
a circle of radius 1, show that at least two of these points will lie at a distance of 
less than 1 from each other. 
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SOLUTION:  We partition the 
circle into six congruent arcs:  

1 2 6, , ,H H H  —these will serve 
as the pigeonholes; see Figure 5.5.   
As shown in the figure, each of 
these arcs has distance between its 
endpoints equal to one. But since 
each arc contains only one of its 
endpoints, it follows that any two 
points in such an arc iH  will be 
separated by a distance less than 
one.  We let the pigeons be the 
seven random points on the circle.  
By the pigeonhole principle, at 
least one of the arcs must contain 
at least two of the randomly 
selected points. (In Figure 5.5,  

3H  contains 3P  and 4.)P    
 

 
EXERCISE FOR THE READER 5.4:  (a) Show that if five points are randomly 
selected inside or on an equilateral triangle of side length one, then there will be 
two of these points whose distance between is not more than 1/2.  (b)  Show that if 
the five points are selected to be inside the triangle, then there will be two whose 
distance is less than 1/2. 
 
EXERCISE FOR THE READER 5.5:  Show that if we take any set of 51 integers 
from the set {1,2, ,100},  then one of the integers in this set must divide some 
other integer in this set.     
 
EXERCISE FOR THE READER 5.6:  Suppose that n is a positive integer.  Show 
that in any set of n + 1 integers none of which is divisible by n, there must exist 
two integers whose difference is divisible by n.   
 
 

 
FIGURE 5.5:  The six pigeonholes ( )iH  and 
seven (random) pigeons ( )iP for Example 5.8. 
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The following application of the pigeonhole 
principle comes from a paper coauthored by the 
illustrious Hungarian mathematician Paul Erdös,3 
see [ErSz-35].   
 
PROPOSITION 5.3:  Let n be a positive integer.  
Every sequence of N = 2 1n + distinct real numbers 

1 2( , , , )Na a a  contains a subsequence of length n + 
1 that is either increasing or decreasing.   
 
The proposition implies, for example, that if a 
brigade of 101 soldiers are standing in a lineup, then 
it is always possible to find 11 to take a step forward 
so that their heights will be nonincreasing or 
nondecreasing, as we go from left to right.4  

 
Proof:  We proceed by the method of contradiction.  Assume that no such 
subsequences exist for a given sequence 1 2( , , , ).Na a a

 we associate an ordered pair of positive integers ( , ),j jI D  where 

jI ,ja  and jD is the 
length of the longest decreasing subsequence starting at .ja

1 2( , , , ) (5,3,7,6,8),Na a a =  then 2 3I =  (corresponding to the 

 
3 Paul Erdös (pronounced “air-dish”) was born in Hungary shortly before the outbreak of World War I. 
His parents were both mathematics teachers.  Erdös’s two elder sisters had perished to scarlet fever 
only  a few days before his birth, so his parents were particularly protective of their last child.  His 
parents were non-practicing Jews, and this led to numerous difficulties for the family.  Erdös’ 
mathematics focused on problem solving rather than general theoretical developments, and he was one 
of the greatest problem solvers of all time, publishing over 1500 papers in his lifetime, mostly in the 
areas of combinatorics and number theory.  He led a simple life that allowed him to focus  almost 
exclusively on mathematics.  Although he had been offered many permanent decent positions that his 
friends encouraged him to accept, he preferred to live out of his suitcase, to travel around the world, 
and meet other mathematicians with whom to work.  Additionally he was very modest and 
noncompetitive. For example, he had independently discovered a very elegant proof of the prime 
number theorem with (Princeton mathematician) Atle Selberg.  Although both had agreed to publish 
their papers back-to-back in the same journal, the latter jumped ahead and won the prestigious Fields 
Medal for it.  Erdös spent very little of the money that he earned (from prizes, lectures, and temporary 
contracts), instead, he used it to put up prizes to encourage work on difficult problems.  He had such a 
wide array of collaborators that the concept of a mathematician’s Erdös number came into being.  
Erdös’s  Erdös number is 0. All of his coauthors have Erdös number 1.  Others who have written a joint 
paper with someone with Erdös number 1 have number 2, and so on.  If there is no chain of 
coauthorships connecting someone with Erdös, then that person’s Erdös number is said to be infinite.  
 
4 In case some heights are the same, we (artificially) perturb them by very small numbers, so as to make 
them all different.  For example, if we are measuring heights only to the nearest half inch, and if we had 
six men who were 75.5 inches tall, we would put these six numbers to be 75.5000, 75.5001, …, 
75.5005.  Once the proposition is applied, we could convert the heights back to their original numbers, 
and then still have a sequence that is nondecreasing/nonincreasing.   

 
 
FIGURE 5.6:  Paul Erdös 
(1913−1996), Hungarian 
mathematician 
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increasing subsequence (3,6,8)) and 2 1D =  (corresponding to the decreasing 
subsequence (3)).  These ordered pairs ( , )j jI D  will serve as our pigeonholes.   In 
light of our (contradiction seeking) hypothesis, we must have ,j jI D n≤   for every 

index j.   Thus, by the multiplication principle, there are at most 2n  pigeonholes, 
and since we have more pigeons, the pigeonhole principle implies that there must 
be two different terms ,j ka a  with j < k, and with   j kI I=  and .j kD D=    We 
will separate into two cases to arrive at contradictions. 
Case 1:  j ka a<    Here we can juxtapose ja to the beginning of an increasing 
subsequence of length j kI I=  that starts at ka  to get an increasing subsequence of 
length 1jI + —a contradiction! 
Case 2:  j ka a>    Here we can juxtapose ja to the beginning of a decreasing 
subsequence of length j kD D=  that starts at ka  to get a decreasing subsequence 
of length 1jD + —a contradiction! 
Since we have arrived at a contradiction in all of the possible cases, the proof of 
the theorem is complete.  □ 
 
 
The Generalized Pigeonhole Principle 
 
The pigeonhole principle guarantees that as long as there is at least one more 
pigeon than there are pigeonholes, then (at least) one pigeonhole has double 
occupancy.  In case there are a lot more pigeons than pigeonholes, the following 
generalization of the pigeonhole principle allows us to draw more accurate 
conclusions. 
 
THE GENERALIZED PIGEONHOLE PRINCIPLE:  If there are N pigeons 
placed into k pigeonholes, then there must be at least one pigeonhole with at least 

/N k    pigeons occupying it.   
 
Proof:  Just as for the first version of the pigeonhole principle, we will proceed by 
the method of contradiction.   Suppose that all of the pigeonholes contained fewer 
than /N k    pigeons.  Then the total number of pigeons contained in all of the 

pigeonholes could be at most ( )/ 1 ,k N k⋅ −    but this number is less than 

( )[ / 1] 1 ,k N k N⋅ + − =  which is a contradiction.  □ 
 
EXAMPLE 5.9:  If we apply the generalized pigeonhole principle to example 
5.7(a), (the company that had 1000 employees), we would arrive at the stronger 
conclusion that there must be at least 3 ( 1000 / 366 )=     employees who share the 
same birthday.  If there were more than 1097 employees, we could say that at least 
four employees share the same birthday. 
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EXERCISES 5.1: 
 
 

1. A standard California license plate consists of a single digit, followed by three letters, followed 
by three digits. 
(a)  How many standard California license plates can be made? 
(b)  How many can be made if no letters or digits can be used twice? 

 
2. (a) A menu special at a restaurant offers three courses:  appetizer, main course, and dessert.  For 

the appetizer, one can choose either house salad, Caesar salad, or soup of the day.  For the main 
course, the choices are either prime rib, chicken Marengo, or sautéed shrimp.  The dessert 
choices are chocolate mousse, mixed fresh fruit platter, or ice cream cake.  How many different 
menus can be created if one must choose one item from each course? 
(b) Repeat Part (a) with an additional cheese course with choices of either:  camembert, garlic 
herb cheese or goat cheese is added along with a beverage choice of beer, iced tea, cola, or milk. 

 
3. A man is deciding among four restaurants:  Italian, Thai, Chinese, or steakhouse, and then four 

after-dinner activities:  a movie, dancing, bowling, or a basketball game on which to take his 
date.  How many different dates can he put together if he includes both dinner and one after-
dinner activity? 

 
4. In a trip from San Diego to Seattle, suppose that we are considering three routes from San Diego 

to Los Angeles, four routes from Los Angeles to San Francisco, and five routes from San 
Francisco to Seattle.   How many different trips could we plan from San Diego to Seattle that go 
through Los Angeles and San Francisco? 

 
5. A restaurant manager is trying to assign five workers, Andy, Beth, Charlie, Doris, and Earl to 

five different jobs for the evening.   
(a)  If all of these workers can do any of these jobs, how many job assignments are possible? 
(b)  How about if Andy, Beth, and Earl cannot do the first two jobs? 
(c)  How about if Andy, Beth, and Earl cannot do the last job? 

 
6. How many positive integers are less than 8000 that have no repeated digits and no occurrences 

of the digits 2, 4, or 8? 
 
7. An international student club has 12 members:  3 Chinese, 2 Vietnamese, 1 French, 3 Germans, 

2 Japanese, and 1 Australian. 
(a) The group elects a president, vice president, and treasurer.  In how many ways can this be 
done? 
(b) Same question as (a) but with the requirement that at least one of the elected be Chinese. 
(c) Same question as (a) but with the restriction that the Germans and Japanese refuse to serve 
together. 
(d) Same question as (a) but with the requirement that two members  A and B will either serve 
together or not at all. 

   
8. (a)  How many functions are there from {1, 2, 3, 4, 5} to {1, 2, 3, 4, 5, 6, 7}? 

(b)  How many of the functions f in Part (a) satisfy ( ) {1, 2}f i ∈ for i = 1, 2, 3? 
(c)  How many of the functions f in Part (a) are one-to-one functions? 

 
9. (a)  How many functions are there from   {1, 2, 3, 4, 5, 6, 7} to {1, 2, 3, 4, 5}? 

(b)  How many of the functions f in Part (a) satisfy ( ) {1, 2}f i ∈ for i = 1, 2, 3? 
(c)  How many of the functions f in Part (a) are one-to-one functions? 

 
10. Suppose that n and m are positive integers.    

(a)  How many functions are there from   {1, 2,  …, n} to {1, 2, …, m}? 
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(b)  How many of the functions f in Part (a) satisfy ( ) {1,2}f i ∈ for i = 1, 2, 3?  (Assume that n > 
2 and m > 1.) 
(c)  How many of the functions f in Part (a) are one-to-one functions?    

 
11. A restaurant’s lunch menu has three courses:   

Cheeses:  Brie, Jarlsberg,  smoked hickory, or Swiss 
Salads:  Caesar, romaine, tossed greens, or chicken 
Sandwiches:  BLT, tuna, turkey, or Italian 
(a)  If one is allowed to choose exactly one item from exactly two of the three different courses, 
how many selections would be possible? 
(b)  If a couple is allowed to choose exactly two items from exactly two of the three different 
courses, how many selections would be possible? 

 
12. A password protocol for a certain network requires that all passwords use digits or lower-case 

letters and consist of six to eight characters. 
(a) How many passwords are possible? 
(b) How many passwords are possible that include at least one digit and at least one letter? 
(c) How many passwords are possible that include at least two letters? 
(d) How many passwords are possible that contain no vowels? 
(e) How many passwords are possible that include at least one digit and at least one consonant? 

 
13. A password protocol for a certain network requires that all passwords use digits or letters and 

consist of five to seven characters.  The protocol is case sensitive. 
(a) How many passwords are possible? 
(b) How many passwords are possible that include at least one digit and at least one letter? 
(c) How many passwords are possible that include at least one digit, at least one lower-case 
letter, and at least one upper-case letter? 
(d) How many passwords are there that contain the string “CAT” (in any mixture of cases)? 

 
14. In a certain state, of the 500 largest companies, 200 offer (free) health insurance (to all 

employees), 300 offer dental insurance, and 150 offer life insurance. Moreover, 150 offer both 
health and dental insurance, 100 offer health and life, 75 offer dental and life, and 50 offer all 
three types of coverage.  How many companies offer none of these three coverages? 

 
15. (a) Use the inclusion-exclusion principle to determine the number of positive integers less than 

6000 that are divisible by at least one of the primes 3, 5, or 7. 
(b) Use the inclusion-exclusion principle to determine the number of positive integers less than 
6000 that are divisible by none of the primes 3, 7, or 11. 
(c) Write and execute computer loops that will check your answers to (a) and (b). 

 
16. (a) Use the inclusion-exclusion principle to determine the number of positive integers less than 

4000 that are divisible by at least one of the numbers 4, 6, or 10. 
(b) Use the inclusion-exclusion principle to determine the number of positive integers less than 
4000 that are divisible by none of the numbers 5, 6, or 15. 
(c) Write and execute computer loops that will check your answers to (a) and (b). 

 
17. (a) Use the inclusion-exclusion principle to determine the number of positive integers less than 

6000 that are divisible by at least one of the primes 3, 5, 7, or 11. 
(b) Write and execute a computer loop that will check your answers to (a). 

 
18. Use (1) to write down an explicit formula for the inclusion-exclusion principle for five sets. 
 
19. (a) Use the inclusion-exclusion principle to determine the number of positive integers less than 

4000 that are divisible by at least one of the numbers 4, 6, 10, 15, or 20. 
(b) Use the inclusion-exclusion principle to determine the number of positive integers less than 
4000 that are divisible by none of the numbers 2, 3, 5, 7, or 11. 
(c) Write and execute computer loops that will check your answers to (a) and (b). 
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20. (a) Explain why among a group of 60 foreign exchange students from the United States, at least 

2 came from the same state. 
(b)  What is the minimum number of cards that must be drawn from a shuffled standard deck of 
52 cards to guarantee that there will be at least one pair?  Provide an example to show that if one 
less than this number is drawn, a pair need not come up. 

 
21. (a) Explain why in a group of 21 men whose heights range from 5 feet to 6 feet 7 inches,  there 

must be at least two whose height, rounded to the nearest inch, must be the same.  
(b)  What is the minimum number of cards that must be drawn from a shuffled standard deck of 
52 cards to guarantee that there will be at least three cards of the same suit?  Provide an example 
to show that if one less than this number is drawn, three same suit cards need not appear. 

 
22. Show that if 13 points are chosen on a circle of radius 1, then at least two of these points will be 

within a distance of 1/2 from one another. 
 
23. (a)  Show that if 10 points are randomly selected in the interior of an equilateral triangle of side 

length 1, then there will be two of these points whose distance from one another is less than 1/3. 
(b)  Show the result of Part (a) is sharp by constructing an example of nine points within an 
equilateral triangle of side length 1 such that the distance between any pair is greater than or 
equal to 1/3.   

 
24. (a)  Show that if five points are randomly selected within the interior of a square of side length 

2, then there will be two of these points whose distance from one another is less than 2.  
(b)  Show that if nine points are randomly selected with the interior of a square of side length 2, 
then there will be three of these points such that the distance between any pair is less than 2.  

 
25. Given a positive integer n > 1, determine the minimum positive integer ,nK   such that if any 

nK points are selected in the interior of an equilateral triangle of side length 1, then there must 
be at least two of these points that lie at a distance less than 1/n from each other.   

 
26. Prove that given any 11 positive integers, at least two of them will have their difference being 

divisible by 10.    
 
27. Prove that given any seven positive integers, at least two of them will have either their sum or 

their difference being divisible by 10. 
Suggestion:  Use the pigeonhole principle with the pigeonholes determined by the last digit of 
each integer in such a way that two integers in the same pigeonhole will have either their sum or 
their difference divisible by 10.   

 
28. Suppose that we have a list of 8 positive integers (with possible duplications) that add up to 20.  

Show that we can always draw a sublist (with possible duplications) from this list whose 
elements add up to four. 
Suggestion:  First show that the list must contain 1 or 2, then use the pigeonhole principle.   

 
29. At a medium-sized university there are 869 students taking an introductory statistics course this 

semester among 10 sections.  What is the smallest possible enrollment in the largest section?   
 
30. How many truth tables are possible for logical statements containing n logical variables? 
 
31. Use mathematical induction to prove the inclusion-exclusion principle (1) for finite unions of 

finite sets: 
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5.2:  PERMUTATIONS, COMBINATIONS, 
AND THE BINOMIAL THEOREM 
 
 
The Difference Between a Permutation and a 
Combination 
 
Our next example will compare and contrast the concepts of a permutation and a 
combination.   Although the example is small enough to count by brute-force, we 
will solve it with an approach that lends itself easily to generalization.   
 
EXAMPLE 5.10:  (Motivating example for understanding the difference between 
a permutation and a combination)   Suppose that Mr. Vitali has interviewed four 
women:  Alice, Betty, Christine, and Daisy, to fill three job openings at his Italian 
restaurant, and that all turned out to be equally qualified. 
(a)  In how many ways can Mr. Vitali hire a cashier, a cook, and a waitress from 
these four applicants?  
(b)  In how many ways can Mr. Vitali hire three of these four women to work as 
waitresses? 
 
SOLUTION:   Although the two questions are similar, there is one very important, 
yet perhaps subtle, difference.  In the first question, the order in which Mr. Vitali 
hires/assigns the women is definitely important, since the jobs are all different.  In 
the second question, however, order/assignment is not relevant, since the women 
are being hired for identical positions.  
 
Part (a):  (Order matters: permutations)  We have already shown how to answer 
questions like this using the multiplication principle; the answer is given by: 
 

women to women  leftwomen  left
hire as   to hire as  to hire as

 cashier   waitress     cook

4 3 2 24.⋅ ⋅ =  

 

Each of these 24 outcomes can be viewed as an ordered triple, e.g., (B, C, D), and 
is called a permutation (or rearrangement) of the four objects A, B, C, D, taken 
three at a time.   The obvious abbreviations are being used, e.g., the triple (B, C, 
D) would correspond to hiring B(etty) as the cashier, C(hristine) as the cook, and 
D(aisy) as the waitress. 
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Part (b):  (Order doesn’t  matter: combinations)  Consider a typical permutation 
of the 24 outcomes for Part (a), e.g., (B, C, D).      If we rearrange (or permute) 
the women in this list, we get a different outcome/permutation for Part (a), e.g., 
(C, D, B), would represent the outcome of hiring C as the cashier, D as the cook, 
and B as the waitress.  Thus different permutations correspond to different 
outcomes for Part (a).  However, for Part (b), all of these permutations of the list 
(B, C, D) would correspond to the same outcome for Part (b), since all of B, C, D 
would be hired as waitresses.  Thus, for Part (b), this outcome should really be 
represented as the set {B, C, D}, since order does not matter (in set notation).   
Such an object is called a combination of the four objects A, B, C, D, taken three 
at a time.    
 
In order to arrive at the answer to Part (b), we first find out how many different 
permutations there are of (just) the ordered list (B, C, D).  The multiplication 
principle can easily give us the answer:    

 

 choose one only one  choose one 
remaining two choice for  of B,C,D
 for 2nd slot last slot  for 1st slot

3 2 1 6.⋅ ⋅ =  

This example is (intentionally) small enough so we can check this by listing all of 
these six permutations of (B, C, D): 
 

(B, C, D),  (B, D, C),  (C, B, D),  (C, D, B),  (D, B, C),  (D, C, B).   

Each of these six outcomes of Part (a) morph into the single combination/set 
outcome {B, C, D} for Part (b).  In the same fashion, every other outcome of Part 
(b) will correspond to six different (permutations) of Part (a), and there is no 
overlapping since different outcomes of Part (b) will correspond to different sets.  
Therefore, if we (temporarily) let Y denote the answer to Part (b), and X denote the 
answer to Part (a), it follows that 6Y = X, so that Y = X/6 = 24/6 = 4.  Again, 
because of the size of this example, it is easy to get this answer directly (each of 
the four outcomes corresponds to deciding which of the four women not to hire).   
These ideas are easily generalized, and this is what we do next.   
 
DEFINITION 5.1:   A permutation of a set of distinct objects is any 
rearrangement of them (as an ordered list).  More generally, if 1 ,k n≤ ≤  a k-
permutation of a set of n distinct objects is any permutation of any k of these n 
objects.  
 
In the preceding example, we saw a way to count the 24 3-permuations of the set 
of four women {A, B, C, D}.  The next result generalizes this idea. 
 
THEOREM 5.4:   The number of k-permutations taken from a set of n distinct 
objects (1 )k n≤ ≤  is denoted by ( , )P n k  and is given by the following formula: 
 

( , ) ( 1)( 2) ( 1).P n k n n n n k= − − − +  (2) 
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(Note that the number of factors is k.)   This number is read as the number of 
permutations of n objects taken k at a time.   
 
Proof:  This is a simple application of the multiplication principle.  We may view 
the task of forming a k-permutation as the k-step process of filling in the k ordered 
slots with objects taken from the n distinct objects (where each object can be used 
only once), working, say, from left to right.  For the first slot, we have n objects to 
choose from.  Once one has been selected, we move on to the second slot, where 
we may put any of the remaining n – 1 objects.  For the third slot there will be n – 
2 choices, and so on, until we get to the kth slot, when there will remain n – k + 1 
choices of objects (convince yourself of this!).   □  
 
The special case when k = n is of such importance that it motivates the following 
definition.   
 
DEFINITION 5.2:   Let n be a positive integer.  The number of permutations of n 
distinct objects, ( , ),P n n  by (2) equals ( 1)( 2) 3 2 1.n n n− − ⋅ ⋅   This number is 
denoted n!, and is called the factorial of n, or just n factorial.   By convention, 
we define 0! = 1.  
 
An easy manipulation of (2) allows us to rewrite ( , )P n k  entirely in terms of 
factorials: 
 

( , ) ( 1)( 2) ( 1)

( 1)( 2) ( 1)[( )( 1) 2 1] ! .
[( )( 1) 2 1] ( )!

P n k n n n n k

n n n n k n k n k n
n k n k n k

= − − − +

− − − + − − − ⋅
= =

− − − ⋅ −



 



 

   
In summary: 
 

!( , ) .
( )!

nP n k
n k

=
−

 (3) 

 
Formula (3) is more useful for theoretical and analytic manipulations than for 
actually computing numbers of permutations.  For example, to compute 

(1000,3)P  by (2) is easy:  1000 999 998,⋅ ⋅  whereas formula (2) would involve 
2000 multiplications (if we were to compute the factorials directly).5   Before 
giving some more examples of permutations, we first formally introduce 
combinations.  After this is done we give some examples that will mix both 
concepts so as to help the reader to develop a sense to better distinguish between 
permutations and combinations.    
 

 
5 Of course, most mathematical software computing platforms have built-in functions for computing 
factorials, but factorials get so large so quickly that, as a general rule, it is best to use formula (2) rather 
than (3) when computing numbers of permutations.   
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DEFINITION 5.3:   If 0 ,k n≤ ≤  a  k-combination of a set of n distinct objects 
is any (unordered) subset that contains exactly k of these objects.      
 
In the preceding example, we previewed a general method for counting 
combinations when we counted the six 3-combinations of the set {A, B, C, D} of 
four women.  Here is the general result: 
 
THEOREM 5.5:   The number of k-combinations taken from a set of n distinct 
objects (0 )k n≤ ≤  is denoted by ( , )C n k  and is given by the following formula: 
 

( , ) !( , ) .
! !( )!

P n k nC n k
k k n k

= =
−

 (4) 
 

This number is read as the number of combinations of n objects taken k at a 
time, or simply as n choose k.     
 
Proof:  The only 0-combination is the empty set, so theorem is true for k = 0 (both 
sides equal 1).  Next we assume that k > 0.  Each k-combination 1 2{ , , , }kx x x  is 
just a subset of size k from the set of n objects under consideration, and gives rise 
to !k  permutations of its elements, by Theorem 2.3 (i.e., ( , ) !).P k k k=    Since k-
permutations arising from different k-combinations must also be different (because 
their elements come from different sets), and since all k-permutations (of the n 
objects under consideration) must be obtainable in this way, we may conclude that  

( , ) ! ( , ).C n k k P n k⋅ =    Dividing this equation by k!, and then using (3) produces 
(4).  □    
 
 
Computing and Counting with Permutations 
and Combinations 
 
As with formula (3), since the factorials get large so quickly, directly computing 
the factorials in (4) is not an efficient way to compute ( , ).C n k    In particular, this 
can cause problems in floating point arithmetic computing systems (see Chapter 5 
of [Sta-04]).  Computationally, it is best to cancel the largest factorial in the 
denominator of (4) with the same factors in the numerator.   For example, we 
would compute (200,2)C  as follows: 
 

200! 200 199 198!(200,2)
2! 198!

C ⋅ ⋅
= =

⋅ 2! 198!⋅
200 199 19,900.

1 2
⋅

= =
⋅

 

 

Most computing platforms have built-in functions for computing factorials, 
permutations, and combinations.  
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As promised, we now give several examples to help provide the reader with some 
intuition on distinguishing between permutations and combinations.  The key 
question to ask when trying to decide whether permutations or combinations are 
relevant is whether order matters—if it does, we are dealing with permutations, 
while if order does not matter, combinations are relevant.  As in the last section, 
two (or more) counting principles might need to be combined to solve a given 
problem.    
  
EXAMPLE 5.11:  Answer each of the following counting questions.  
(a)  A recent Honolulu Marathon had 24,265 participants.  How many top three 
finishes are (theoretically) possible?  
(b)  In how many ways can a committee of two democrats and two republicans be 
formed from a group of 60 republican senators and 40 democratic senators? 
(c)  Answer the question of Part (b) with the additional requirement that 
democratic senators K and L refuse to serve together. 
(d)    In how many ways can four math books, two computer science books, and 
five economics books be arranged on a shelf? 
(e)    In how many ways can the books in Part (d) be arranged on a shelf if books 
of the same subject need to be grouped together? 
 
SOLUTION:  Part (a):  Order clearly matters here:  P(24265, 3) = 24265 24264⋅ ⋅  

1324263 1.485 10 .≈ ×   (Of course, only a handful of these outcomes would be 
reasonably likely.)  
 

Part (b):  The order that the people are put on this committee is not important, so 
combinations are relevant here.   We can form such a committee by first taking a 
2-combination of the set of 60 republicans (this can be done in C(60,2) ways), and 
then taking a 2-combination from the set of 40 democrats (this can be done in 
C(40,2) ways).  By the multiplication principle, there will be (60,2) (40,2)C C⋅  = 
(60 59 / 2!)(40 39 / 2!) 1,380,600⋅ ⋅ =  such committees.   
Part (c):  We need to modify our solution of Part (b) to answer the present 
question.  The part that needs modification is in computing the number of ways of 
choosing two democrats.  There are two natural (and disjoint) cases: either a 
committee with neither K nor L, or a committee with (exactly) one of K or L.  
There will be (38,2) 38 37 / 2 703C = ⋅ =  committees of the first type (since with 
neither K nor L, 38 democratic senators remain), and (2,1) (38,1)C C⋅  = 
2 38 76⋅ =  committees of the latter type.  Thus, we will have a grand total of 
(60 59 / 2!)(703 76) 1,378,830⋅ + =  such committees.   

 

Part (d):  We have to arrange 4 + 2 + 5 = 11 different books in a row.  Order 
clearly  matters  here:  there are 11! = 39,916,800 permutations of these 11 books. 
 

Part (e):  We first treat each type of book as a “block.”  Thus we have three blocks:  
the M block consisting of the four math books, the C block consisting of the two 
computer science books, and the E block consisting of the five economics books.  
We can view arranging the books on the shelf as first arranging the three blocks, 
for which there are 3! ways to do this, and then deciding how to permute the books 
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in each block:  for the M block, there are 4! ways to arrange the four math books, 
and similarly, there are 2!  and 5! ways to arrange the books in the C and E blocks, 
respectively.  Therefore, by the multiplication principle, the total number of ways 
of arranging the books in this fashion will be 3! 4! 2! 5!⋅ ⋅ ⋅ = 34,560. 
 
EXERCISE FOR THE READER 5.7: (Circular permutations) In Chinese 
restaurants,  tables  are often circular  (so  that  everyone  has an equally  
prominent  seat),  with  a  Lazy  Susan in  the  center  to 
facilitate access of the meal items; see Figure 5.7.   
(a) If there are n seats around the table, in how many 
ways could n people be seated around the table?   Two 
seating arrangements are considered to be equivalent if 
the relative positions of all people are the same, i.e., if 
one arrangement can be obtained from the other by a 
rotation.   
(b) How many arrangements are possible if n = 2k, 
where there are k men and k women and each man has a 
woman on either side? 
(c)  How many arrangements are possible as in Part (b) 
under the additional requirement that Jimmy and Sue 
should be seated next to one another?  
(d) How many arrangements are possible as in Part (b) under the additional 
requirement that Jimmy and Sue should not be seated next to one another?  
 
Our next example concerns five-card poker hands, which are assumed to be 
randomly drawn cards from a (shuffled) standard deck of playing cards.6  
 
EXAMPLE 5.12:  A poker hand consists of a random drawing of five cards from 
the standard 52-card deck.   
(a)  How many different poker hands are possible? 
(b)  How many poker hands are possible that contain at least one pair? 

(d)  How many poker hands are possible that contain no aces? 
(e)  How many poker hands are possible that contain at least one ace? 
 
SOLUTION:  Since order does not matter in poker hands, we are dealing with 
combinations in each part.   

 
6 The cards of a standard 52-card deck are evenly divided among the four suits (clubs and spades, 
which are black, and diamonds and hearts, which are red), and each suit has 13 denominations:  (A)ce 
= 1, 2, …, 9, 10, (J)ack, (Q)ueen, (K)ing.  The last three cards are face cards.  A (five-card) poker hand 
is usually described in the most complimentary terms among the following possibilities, listed in order 
from least valuable (most common) to most valuable (most rare):  high card, pair, two (separate) pairs, 
three of a kind, straight (five cards in sequence, ace can go before 2 or after king), flush (five cards of 
the same suit), full house (three of a kind and a pair), four of a kind, straight flush (straight plus flush), 
royal flush (10, J, Q, K, A, all of same suit). Thus, an example of a pair would be {8, 8, 2, 4, K}. Order 
does not matter in a poker hand.    
  

 
 

FIGURE 5.7:  A 
Chinese dinner table for 
Exercise for the Reader 
5.7. 
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Part (a):  C(52,5) = 52 51 50 49 48 / (5 4 3 2 1) 2,598,960.⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =    
 

Part (b):  We use the complement principle (often useful for counting sets that are 
described using the phrase “at least”).  The number of poker hands that contain at 
least one pair is the total number of poker hands less the number that contain no 
pairs.   The number with no pairs can easily be counted using the multiplication 
principle:    There are C(13,5) ways to choose five different denominations in such 
a poker hand and for each denomination we have four choices for the suit.   It now 
follows that the number of poker hands that contain at least one pair is given by: 
 

5C(52,5) C(13,5) 4 =1,281,072.− ⋅  
 

Part (c): First, we choose the denomination for the pair; there are 13 choices.   
Next, from the four cards of this given denomination, we need to choose two, and 
there are C(4,2) = 4 3 / (1 2) 6⋅ ⋅ =  ways to do this.  Once this is done we need to 
choose three different denominations for the remaining cards.  There are C(12,3) 
12 11 10 /1 2 3⋅ ⋅ ⋅ ⋅ = 220 ways to do this.   Finally for each of these chosen 
denominations, we have to choose one of the 4 cards. 

3 3C(13,1) C(4,2) C(12,3) 4 =13 6 220 4  =1,098,240.⋅ ⋅ ⋅ ⋅ ⋅ ⋅  
 

Part (d):  Thinking of the poker hand as being dealt from a deck with the four aces 
removed, this gives the total number of such hands to be: 
 

(48,5) 48 47 46 45 46 / (5 4 3 2 1) 1,712,304.C = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  
 

Part (e):  We give two methods for counting these poker hands: 
 

Method 1:  (Direct counting)  We decompose into disjoint cases: 
Number of hands with at least one ace = Number with exactly one ace + Number 
with exactly two aces + Number with exactly three aces + Number with all four 
aces.   
To count the number of hands with exactly two aces, we use the multiplication 
principle as follows: 

Number of ways Number of ways
to choose 2aces to choose3cards
from the the four from the non-aces

(4, 2) (48,3)C C⋅
 

 

The same idea works for other cases to yield the grand total to be: 
 

Hands with exactly one ace Hands with exactly two aces Hands with exactly three aces Hands with all four aces

(4,1) (48,4) (4,2) (48,3) (4,3) (48,2) (4,4) (48,1)

778,320+103,776 4512

C C C C C C C C⋅ + ⋅ + ⋅ + ⋅

= + +

   

48 886,656.=
 

Method 2:  (Using  complements)  The complement of the set of poker hands 
containing at least one ace is simply the set of poker hands with no aces.  So we 
can get the answer we want by subtracting the number of hands with no aces 
(which we figured out in Part (d)) from the total number of poker hands (that we 
computed in Part (a)):   



334 Chapter 5:  Counting Techniques, Combinatorics, and Generating Functions 
 

Total number of Number of possible Number of possible
possible poker hands poker hands without poker hands with at

aces least one ace

2,598,960 1,712,304 886,656− =
  

 

This provides a nice check.  In general, complements can often save time for 
counting problems involving phrases such as “at least” or “no more than.” 
 
EXERCISE FOR THE READER 5.8:  In a standard five-card poker hand, 
compute the total number of possible five-card poker hands that are: 
(a) full houses. 
(b) flushes. 
(c) four of a kind hands. 
 
At this point, it will be beneficial to observe a useful identity for combination 
numbers C(n, k).  Since C(n, k) represents the total number of k-element subsets of 
a set with n elements, it follows that 0 ( , )n

k C n k
=∑  must be the total number of 

subsets of a set with n elements.  But we know from Theorem 5.1 that this latter 
number is just 2 .n    We have thus proved the following theorem: 
 
 
THEOREM 5.6:  The number of subsets of a set with n elements is 
 
 

( ,0) ( ,1) ( , ) 2 .nC n C n C n n+ + + =  (5) 
 
 
 
The Binomial Theorem 
 
This is one of many combinatorial identities involving k-combination coefficients.  
Our next result is a theorem of algebra involving these coefficients.  In such 
algebraic contexts, the k-combination coefficients are customarily referred to as 
binomial coefficients, and are denoted as follows: 
 
NOTATION:  For nonnegative integers n and k, with ,k n≤  the binomial 

coefficient n
k
 
 
 

 is the number C(n,k) of n objects taken k at a time, i.e., (from (4)): 

 

 . 

 
 
THEOREM 5.7: (The Binomial Theorem)  If x and y are any numbers, and n is a 
nonnegative integer, then  
 
 

!
!( )!

n n
k k n k
 

=  − 
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0
( ) .

n
n k n k

k

n
x y x y

k
−

=

 
+ =  

 
∑  (6) 

 
Proof:  There are several ways to prove this theorem; keeping in the spirit of this 
chapter, we will present a combinatorial proof.   If we expand the left side of (5) 
 

factors

( ) ( )( ) ( ) ,n

n

x y x y x y x y+ = + + +



 

 

we can view the result as a sum of terms, each one arising by choosing either an x 
or a y from each of the n factors.  Thus, each term that will arise must be of the 
form k n kx y − for some nonnegative integer k between 0 and n (inclusive), and this 
will correspond to choosing x’s from k of the factors, and y’s from the remaining 
n k− factors.   Now, in how many such ways can the term  k n kx y −  arise?  This 
will simply be the number of ways that one can choose a set of k of the n factors to 
be designated as x-factors (and the remaining  n k−  factors to be designated as y-
factors).  Since the order in which these factors are selected is unimportant (the 
product of the x’s and y’s will always work out to be k n kx y − ), this number is 

simply ( , )C n k = .n
k
 
 
 

   This completes the proof of (6).   □   

 
EXAMPLE 5.13:  Use the binomial theorem to expand the following square and 
cubic polynomials:    (a)  2( )x y+ , and  (b)  3( 2 )a b− .   
(c)  What is the coefficient of 10x in the expansion of 16( 2)x + ? 
 
SOLUTION: Part (a):  Using (6) directly with n = 2, we obtain 
 

2 0 2 0 1 2 1 2 2 2 2 22 2 2
( ) 2

0 1 2
x y x y x y x y y xy x− − −     
+ = + + = + +     

     
. 

 

Part (b):  Using (6)  with n = 3 (and with x = a and y = −2b), we obtain 
 

3 0 3 0 1 3 1 2 3 2 3 3 33 3 3 3
( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 )

0 1 2 3
a b a b a b a b a b− − − −       
− = − + − + − + −       

       
 

     
3 2 2 3

3 2 2 3

8 3 4 3 ( 2 )
6 12 8

b a b a b a
a a b ab b

= − + ⋅ + − +

= − + −
 

 

Part (c):  The term in the right side of (6) corresponding to 10x would correspond 
to the index k = 10.  The resulting coefficient (with n = 16 and y = 2 and removing

10 )x is thus 
 

 16 10 616 16! 11 122 2
10 10!6!

−  ⋅
⋅ = ⋅ = 

 

13 14 15⋅ ⋅ ⋅ 16
1 2

⋅
⋅ 3⋅ 4⋅ 5⋅ 6⋅

62⋅ 4 512,512.=  
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One very attractive way to obtain binomial coefficients is from the following so-
called Pascal’s triangle that is often first introduced in high school algebra 
courses: 
 

01 0
1 11 1 0 1

2 2 21 2 1 0 1 2
3 3 3 31 3 3 1 0 1 2 3

4 4 4 4 41 4 6 4 1 0 1 2 3 4

 
 
 

   
   
   

     
     
     

       
       
       

         
         
         

     

 

 
The triangle of numbers goes on forever.  Each of the outer diagonal entries is 1, 
corresponding to the identity 0 1n n

n
   
   
   

= = .  Each internal entry is obtained by 

adding the two entries that lie immediately to the above left and right of it.  This 
follows from the following identity for binomial coefficients: 
 

1 1
,

1
n n n
k k k
− −     

+ =     −     
 (7) 

 

valid whenever 0 .k n< <    
 
Proof of (7):  We can give a nice combinatorial proof of (7) as follows:  The right 
side of (7)  is the number of different subsets of size k that one can choose from a 
set of n objects.  We consider a set T with n elements and remove one of the 
elements, which we label as a, and we call the resulting set S (for smaller set).  
Thus, we can write { },T S a= ∪  where the union is disjoint (so S has 1n −  

elements).  We know that n
k
 
 
 

 corresponds to the number of subsets of T having k 

elements.  Now, such a subset can either be a subset of S also with k elements (if it 
does not contain a), or consists of a together with a subset of S of size 1k − (if it 
does contain a).  There are 1n

k
− 

 
 

 subsets of the first type (corresponding to 

subsets of S having k elements) and 1
1

n
k
− 

 − 
 subsets of the second type 

(corresponding to subsets of S having 1k − elements).    Since these two types of 
sets form a disjoint partition of the size k subsets of T, the identity (7)  follows.  □  
 
EXERCISE FOR THE READER 5.9:  Give a non-combinatorial proof of the 
identity (7) using factorial manipulations.   
 
EXERCISE FOR THE READER 5.10:  (a)  Prove the following identity: 
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1
1 2 3
m m m m

m
       

= − + − ±       
       

 , 
 

where m is any positive integer.   
(b)  Use the identity of Part (a) to prove the general case of the inclusion-exclusion 
principle (formula (1) from the last section): 
 

1 2
1 2

1 2
1 2

1 2
1

1

1
1 2

| | | | | |

( 1) | |

( 1) | | .

a
a

n

n i i i
i i i

a
i i i

i i i
n

n

A A A A A A

A A A

A A A

= <

+

< < <
+

∪ ∪ ∪ = − ∩ +

+ − ∩ ∩ ∩ +

+ − ∩ ∩ ∩

∑ ∑

∑


 

 



 

 
Suggestion:  For Part (a), use the binomial theorem.  For Part (b), consider a 
single element ,ix A∈∪  let m be the number of sets iA  to which x belongs. Use 
the identity of Part (a) to count the number of times the right side of (1) 
contributes to the count of the element x.    
 
 
Multinomial Coefficients 
 
The binomial coefficients are a special case of the so-called multinomial 
coefficients, which we motivate with the following example: 
 
EXAMPLE 5.14:  (Motivating example for multinomial coefficients)   How many 
“words” can be created by rearranging the four letters in the word “look?”  Here 
we take a word in the general sense to mean any sequence of four letters, 
regardless whether it has any meaning in any language.   
 
SOLUTION:  If the letters in “look” were all different, the answer would simply 
be the number of permutations of four objects, or 4!  = 24.  Let us temporarily 
label the duplicate letter o’s as 1o and 2o ,  so they will be distinct.  Then, any of 
the 24 possible permutations of the list “l 1o 2o k,” say “k 1o 2o l,” can have the 
two symbols 1o  and 2o  permuted (k 2o 1o l) and the result will be 
indistinguishable from the original permutation, once the artificial labels on the o’s 
have been removed.  On the other hand, any other permutation of “k 1o 2o l” 
would be distinguishable if the o-labels are detached.  Thus, to get the number of 
distinguishable permutations of “look,” we need to divide the total number of 
permutations 4! by this duplication number 2!, to get 4!/2! = 12.   
 
We now state and prove the general result: 
 
THEOREM 5.8: (Permutations of Objects That Are Not All Distinguishable)   
Suppose that n objects are of k different types.  Assume that there are 1n objects of 
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Type 1, 2n are of Type 2, …, and kn objects of Type k, where 1 2 .kn n n n= + + +    
The number of distinguishable permutations of these n objects is given by the 
multinomial coefficient 
 

1 2 1 2

! .
, , , ! ! !k k

n n
n n n n n n
 

≡ 
 



 

 

This number also coincides with the number of ways to place n distinct objects 
into k distinguished groups with 1n objects in the first group, 2n in the second 
group, …, and kn in the last group.    
 
We will give two different combinatorial proofs of this theorem; the first proceeds 
along the lines of the motivating example, while the second is a more direct proof. 
 
Proof 1:  We know that there are 1 2! ( )!kn n n n= + + +  permutations of these 
objects.  For any such permutation, any of the 1n objects of Type 1 can be 
permuted in any of the 1 !n  possible ways and the resulting permutation will not be 
distinguishable from the original.  The same holds true if we perform any of the 

2 !n  possible permutations of the Type 2 objects, any of the 3 !n  possible 
permutations of the Type 3 objects, and so on.  By the multiplication principle, it 
follows that each permutation thus corresponds to a total of 1 !n 2 ! !kn n⋅ 

permutations that are indistinguishable from one another.  These sets of 
permutations partition the entire collection of permutations.  Dividing the total 
number of permutations by this duplication number gives us the asserted number 
of distinguishable permutations.  The latter statement can be justified in the same 
fashion.   □  
 
Proof 2:   Imagine a row of n slots to fill with these n objects.   
Choose 1n slots to be filled with objects of Type 1.  There are 

1

n
n
 
 
 

 ways to do this. 

From the remaining 1n n−  slots, we next choose 2n of them to be filled with 

objects of Type 2.  This can be done in 1
2

n n
n
− 

 
 

 ways.  From the remaining 

1 2n n n− −  slots, we next choose 3n of them to be filled with objects of Type 3. 

This can be done in  1 2
3

n n n
n

− − 
 
 

 ways.  Continuing in this fashion, the 

multiplication principle tells us that the number of distinguishable permutations of 
these n objects is given by: 
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1 2 11 21

1 32

1 1

!
! ( )!

k

k

n n n nn n nn nn
n nn n

n
n n n

−− − − −− −−      ⋅ ⋅ ⋅ ⋅              

=
−





1( )!n n−
⋅

2 1 2! ( )!n n n n− −
1 2( )!n n n− −

⋅
3 1 2 3! ( )!n n n n n− − −

1 2 1( )!kn n n n −− − − −
⋅⋅ ⋅





1 2 1

1 2 3 1 2

!( )!
! ! .

! ! ! !0! ! ! !

k k k

k k

n n n n n n
n n

n n n n n n n

−− − − − −

= =



 

 

 
The latter statement can be justified in the same fashion.     
 
 
EXERCISE FOR THE READER 5.11:  How many distinguishable permutations 
are there of the word  MISSISSIPPI?  
 
In the basic Example 5.9, we would have n = 4 (four letters), 1 3 1n n= =
(corresponding to the unique letters “l” and “k”) and 2 2n =  (corresponding to the 

duplicated letter “o”), and the answer we obtained equals 4
1, 2, 1
 
 
 

4! 24 12.
1! 2!1! 1 2 1

= = =
⋅ ⋅

  The multinomial coefficients are so named because of the 

multinomial theorem that we will describe shortly.  Note that when k = 2, the 
multinomial coefficient 

1 2,
n

n n
 
 
 

 coincides with the binomial coefficients 

1 2
.n n

n n
   =   
   

 

 
The combinatorial proof that we gave for the binomial theorem generalizes 
naturally to the expansions of powers of multinomials.  The general result is 
contained in the following theorem: 
 
 
The Multinomial Theorem 
 
THEOREM 5.9: (The multinomial theorem)  If 1 2, , , rx x x  are numbers, and n is 
a nonnegative integer, then 
 
 

 1 2

1 2

1 2 1 2
1 2

nonnegative integer

( )
, , ,

r

r
i

k k kn
r r

k k k n r
k

n
x x x x x x

k k k+ + + =

 
+ + + =  

 
∑


 



 (8) 
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The sum in the right-hand side of (8) can be viewed as being taken over all of the 
vectors 1 2( , , , )rk k k  of nonnegative integers ( 0 ik n≤ ≤ ) whose components add 
up to n.   
 
EXERCISE FOR THE READER 5.12:  Prove Theorem 5.9. 
 
EXAMPLE 5.15:  Use the multinomial theorem to expand . 
 
SOLUTION:  We have r = 3 (trinomial) and n = 2 (with 1 2, 2x x x y= =  and 

3 3x z= ).   The totality of vectors 1 2 3( , , )k k k  corresponding to the terms in the 
right-hand side of (8) are as follows:  1 2 3( , , )k k k = (2,0,0), (0,2,0), (0,0,2), (1,1,0), 
(1,0,1), and (0,1,1).  The first three of the corresponding multinomial coefficients 
all equal 2!/ 2! 1,= while the last three equal 2!/1!1! 2.=   Computing with (8) (in 
the order that these vectors were listed), we now obtain 

2 2 2 2

2 2 2

( 2 3 ) (2 ) (3 ) 2[ (2 ) (3 ) (2 )(3 )]
4 9 4 6 12 .

x y z x y z x y x z y z
x y z xy xz yz

+ + = + + + + +

= + + + + +
 

 
EXERCISE FOR THE READER 5.13:  Show how formula (8)  can specialize to 
the binomial theorem (5). 
 
EXERCISE FOR THE READER 5.14:  What is the coefficient of 6 3 3 2a b c d in the 
expansion of 14(2 3 4 ) ?a b c d− + −  
 
We end this section with another useful counting argument.  At first glance, 
combinations might not seem very relevant, but with an ingenious artifice they 
may indeed be applied.  
 
EXAMPLE 5.16:  (Motivating example for a  partitioning argument)   Joey has 
five identical chocolate bars that he plans to give to his three cousins, Abby, Billy, 
and Christy.   In how many different ways can he distribute these bars to his 
cousins? 
 
SOLUTION:   The different distributions of the five chocolate bars can be 
displayed graphically by laying out the five chocolate bars in a horizontal row, and 
inserting two partitions anywhere among the six slots between bars (or to the 
left/right of all of them).  This will partition the bars into three groups (some 
possibly empty):  the group to the left of the two partitions, which we arbitrarily 
assign to be Abby’s allotment, the group between the two partitions:  Billy’s 
allotment, and the group to the right of the two partitions:  Christy’s allotment.  
Figure 5.8 shows a particular allotment with this scheme.   Note that there is one 
less partition bar than the number of people to distribute to. 
 

2( 2 3 )x y z+ +
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FIGURE 5.8:  A possible distribution for the five (identical) chocolate bars to three people.  
The two barriers partition the distribution into three categories: (i) to the left of the first 
partition: no bars to Abby, (ii) between the two barriers: one bar to Billy, and (iii) to the 
right of the second partition:  four bars to Christy. 
 
Clearly, the different allotments of the five bars to the three individuals correspond 
to the number of different bar/partition diagrams.  We can view this question as 
the count of the number of distinguishable arrangements of seven objects (five 
chocolate bars + two partition bars), where the five chocolate bars are identical as 
are the two partition bars.  Thus, by Theorem 5.8, the number of such 

arrangements is 
5 (3 1) 7

21.
5, 2 2
+ −   

= =   
   

 

 
The reader should be able to prove the following general result, the task will be 
left as Exercise 36.   
 
THEOREM 5.10: (Distribution of Identical Objects to Different Places)  The 
number of ways to distribute n identical objects to d different (distinguishable) 

places is given by 
( 1)

.
1

n d
d
+ − 

 − 
 

 
EXERCISE FOR THE READER 5.15: (a)  How many different nonnegative 
integer solutions are there (for 1 2 3 4, , , )x x x x  in the equation 

1 2 3 4 12?x x x x+ + + =  
(b)  How many different positive integer solutions are there for the equation in 
Part (a)? 
Suggestion:  For Part (a), consider the analogy of placing 12 identical balls into 4 
different urns and view assigning each ix  a nonnegative integer as placing this 
number of balls into the ith urn.  For Part (b), introduce new variables 1i iy x= +  
which will be positive integers whenever the ix ’s are nonnegative integers, and 
then use the method of Part (a).   
 
EXERCISE FOR THE READER 5.16:  How many terms are there in the sum (8) 
of the multinomial theorem?    
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EXERCISES 5.2: 
 
 

1. (a)  Write down all of the permutations of the word CAT. 
(b)  Write down all 2-permutations of the objects {A, B, C, D, E}. 
(c)   Write down all 2-combinations of the objects {A, B, C, D, E}. 

 
2. (a)  Write down all of the permutations of the list (1, 2, 3). 

(b)  Write down all 3-permuations of the objects {1, 2, 3, 4, 5}. 
(c)  Write down all 3-combinations of the objects {1, 2, 3, 4, 5}. 

 
3. Compute each of the following quantities: 

 

(a)  P(3,3) (b) C(5,5) (c) P(52,3) 
(d)  C(20,5) (e)  P(5,1) (f)  C(6,0) 

 

 
4. Compute each of the following quantities: 

 

(a)  P(6,3) (b) C(5,2) (c) P(100,5) 
(d)  C(200,5) (e)  P(8, 8) (f)  C(1000,0) 

 

 
5. Pizza Castle offers 12 different toppings on their pizzas.   

(a)  How many different three-topping pizzas can be ordered? 
(b) How many different pizzas can be made that include up to three toppings (no toppings is 
possible, this would be just a plain cheese pizza)? 

 
6. Cold Cream offers its ice cream sundae with a choice of one, two, or three scoops of ice cream, 

and a choice of exactly three different toppings from eight available toppings.  (Regardless of 
the number of scoops ordered, three different toppings must be chosen.) 
(a)  How many different sundaes can be ordered with vanilla ice cream? 
(b)  How many different sundaes can be ordered if the ice cream can be chosen from 31 different 
flavors, but it must be the same flavor for each scoop? 
(c)  How many different sundaes can be ordered if the ice cream can be chosen from 31 different 
flavors, and can be a different flavor for each scoop? 

 
7. (a)  Suppose you have won five tickets to an upcoming LA Lakers basketball game.  In how 

many ways can you invite 4 of your 12 best friends to come along? 
(b)  Suppose you have seven different NBA basketball team T-shirts.  In how many ways can 
you distribute these shirts to 7 of your 12 best friends? 

 
8. The computer science (CS) faculty at a certain university consists of 20 members, 13 of whom 

are senior faculty and 7 of whom are junior members.  The total number of faculty at this 
university is 365.  A hiring committee for a new computer science faculty member is to be 
composed of five faculty members.  How many hiring committees are possible if: 
(a)  They all come from the CS department? 
(b)  The committee is composed of three senior and two junior CS faculty members? 
(c)  The committee is composed of CS faculty with at least one junior member? 
(d) The committee contains exactly one outside (the computer science department) faculty 
member, at least one senior CS faculty member, and at least one junior CS faculty member? 

 
9. A math department is giving out awards to a particularly strong senior class.  It has three 

different awards:  Award I, worth $2000, Award II, worth $1000, and Award III, worth $500.  It 
decides that it can distribute a total of five awards, to five students from the group of eight 
outstanding students A, B, C, D, E, F, G, and H.  In how many ways can the awards be 
distributed if: 
(a)  Five Award III’s will be distributed. 
(b)  Any combination of the three awards can be given. 
(c)  Any combination of the three awards can be given, but students B and H should either both 
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get an award or both not get an award. 
(d)  Any combination of the three awards can be given, but students B and H should either both 
get the same award or both not get an award. 

 
10. The French club at a certain university has 12 active members, 5 of whom are men.  A yearbook 

photo will be taken with 8 of the 12 students lined up in a row.  How many such photo 
arrangements are possible if: 
(a)  There are no restrictions. 
(b)  Half of the subjects must be women. 
(c)  Half of the subjects must be women, the men all stand together, and the women all stand 
together. 
(d)  Half of the subjects must be women, and the men should all stand together. 
(e)  Half of the subjects must be women, and no two men stand together. 
(f)  If there are more women than men, no two women stand together; otherwise no two men 
stand together. 

 
11. At a five-year reunion of a college tennis team, 26 former teammates show up, 15 of whom are 

men.   
(a)  If everyone shakes everyone else’s hand, how many handshakes will there be? 
(b)  If all men shake hands with one another and all the women hug one another, how many hugs 
and handshakes will there be? 
(c)  If all women shake hands with one another and hug all of the men, how many hugs and 
handshakes will the women be involved with? 

 
12. Count the number of possible three-card poker hands (consisting of three cards drawn from a 

shuffled standard deck of 52 cards) that contain: 
(a)  At least two spades. 
(b)  A flush (three cards of the same suit). 
(c)  Three different suits.  

 
13. Count the number of possible four-card poker hands (consisting of four cards drawn from a 

shuffled standard deck of 52 cards) that contain: 
(a)  At most one heart. 
(b)  Four different suits.  
(c)  At least two cards of the same suit. 

 
14. In the senatorial primary election of a certain year in Guam, there are 23 Democratic candidates 

and 16 Republican candidates.  The rules for a voting ballot are that up to 15 candidates can be 
voted for, but only from one party.  In how many ways can a ballot be (correctly) cast, assuming 
that voting for no candidates is an acceptable ballot (indeed, a political statement)? 

 
15. To pass an exam, a law student must choose five of eight essay questions to answer.  How many 

choices does he/she have?   What if he/she is required to answer at least three of the first four 
questions? 

 
16. How many permutations of the letters {A, B, C, D, E, F, G} are there, such that: 

(a)  A precedes B? 
(b)  A precedes B, and C precedes D? 
(c)  A precedes B, which in turn precedes C? 
(d)  C, D, and E appear together in this order? 
(e)  A and B are appear together in this order, as do C and D? 

 
17. How many permutations of the letters {A, B, C, D, E, F, G} are there, such that: 

(a)  C and D are next to each other? 
(b)  A, B, and C are next to each other? 
(c)  C is between A and B? 
(d)  F, A, and D are seated together in this order? 
(e)  F, A, and D are seated together in this order, as are G and B. 
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18. (a) How many possible finishes are there in a three-car drag race if double and triple ties are 

possible? 
(b) How many possible finishes are there in a four-car drag race if double,  triple, and quadruple 
ties are possible? 

 
19. (a)  In how many different ways can 10 men be paired off to dance with 10 of 15 women? 

(b)  Same question as (a) but with the additional requirement that Jack either dances with Cindy 
or sits out (in which case only nine couples would dance). 
(c)  Same question as (a) but with the additional requirement that Jenny and Clair will either 
both dance or both sit out? 

 
20. (a)  Expand 5( ) .x z−  

(b)  Expand 6(2 3 ) .x y+  

(c)  What is the coefficient of 12x  in the expansion of 3 5(2 5) ?x −  
 
21. (a)  Expand 7( ) .x z+  

(b)  Expand 3 5(5 ) .x y+  

(c)  What is the coefficient of 6 6x y  in the expansion of 2 3 5(3 4 ) ?x y−  
 

22. (a)  Prove that for any positive integer n, we have 
0

3 2 .
n

n k

k

n
k

=

 =  
 ∑  

(b)  Obtain a similar expansion for nx for any real number x.   

(c)  From Part (b) obtain the expansion 
0

( 1) 0.
n

k

k

n
k

=

  − = 
 ∑  

 

23. Prove that for any positive integer n, we have 
2

0

2 .
n

k

n n
k n

=

   =   
   ∑  

Suggestion:  An elegant combinatorial proof can be achieved by considering a set T containing 
2n elements, and splitting T into two n-element sets R and S.  Now any k-combination of T must 
be expressible as a disjoint union of a j-combination of R and an n – j combination of S, for 
some nonnegative integer j.    

 
24. (a)  Expand 4( 2 3 ) .x y z+ +  

(b)  Expand 2 3 3( ) .x y z w− − +  

(c)  What is the coefficient of 5 3 8x y z  in the expansion of 2 12(5 2 3 ) ?x y z− +  
 
25. (a)  Expand 4(2 2 5 ) .x y z− +  

(b)  Expand 4( ) .x y z w+ + +  

(c)  What is the coefficient of 4 6 8 24x y z w  in the expansion of 2 4 20( 2 3 ) ?x y z w+ + +  
 
26. How many distinguishable permutations are there of each of the following words? 

 

(a)  CANADA (b)  SWEET 
(c)  BANANA (d) MATHEMATICS 

 

 
27. How many distinguishable permutations are there of each of the following words? 

 

(a)  YOYO (b)  LOLLIPOP 
(c)  ELEMENTAL (d)  KAMEHAMEHA 
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28. Suppose that a boat runs colored flags up a vertical pole to make signals.  The boat has three red 

flags,  and six white flags. 
(a)  How many different signals can the boat’s captain give using all nine of these flags? 
(b) How many different signals can be made using exactly three flags? Assume that only the 
relative position of the flags matters, i.e., different gaps and/or positionings of the flags do not 
count as different signals.  
(c)  How many different signals can be made using from one to three flags?  See Part (b) for the 
conventions.   

 
29. Suppose that a boat runs colored flags up a vertical pole to make signals.  The boat has three red 

flags, two green flags, and four yellow flags. 
(a)  How many different signals can the boat’s captain give using all nine of these flags? 
(b) How many different signals can be made using exactly three flags? Assume that only the 
relative position of the flags matters, i.e., different gaps and/or positionings of the flags do not 
count as different signals.  
(c)  How many different signals can be made using from one to three flags?  See Part (b) for the 
conventions.   

 
30. (a)  In how many ways can 24 new (and identical) computers be distributed to the Math 

Laboratory, the Computer Laboratory, and the Physics Laboratory at a certain university? 
(b)  Same question as (a) but with the additional requirement that the Physics Laboratory must 
receive at least three computers, and the other two labs must receive at least one each. 

 
31. Suppose that we have $15,000 to invest in (up to) three different mutual funds: A, B, and C, and 

that we can allocate investments in each fund in increments of  $500.   
(a)  How many such investment allocations are possible? 
(b)  How many such allocations are possible if the minimum investments in funds A and C are 
$2500? 

 
32. (a)  How many solutions are there of the equation 1 2 3 4 10,x x x x+ + + = where each 1ix ≥ − an 

integer? 
(b)  Repeat Part (a) if now only 1 3, 1x x ≥ − but 2 4, 2.x x ≥ −  

 
33. Pumpkin’s Donuts sells eight different kinds of donuts.  How many different dozens of donuts 

can be sold? 
 
34. A wallet contains five traveler’s checks that are taken from the following denominations:  $1, 

$5, $50, $500.   
(a) How many different combinations of travelers checks are possible?  
(b) Do different combinations always result in different total dollar amounts?  

 

35. (a)  Give a combinatorial proof of the identity ,n n
n k k
   =   −   

0 ,k n≤ ≤ and then give a 

noncombinatorial proof.   

(b) For a positive integer n, what is the value of the integer k, 0 ,k n≤ ≤  for which n
k
 
 
 

 is at its 

maximum value?   Show that the binomial coefficients increase as k increases to this value, and 
then decrease as k increases from this value to n.   
Note:  The identity in Part (a) corresponds to the left-right symmetry in Pascal’s triangle. 
Suggestion:  For Part (b), deal separately with the cases in which n is even and n is odd. 

 
36. Use mathematical induction to give another proof of the binomial theorem. 
 
37. How many onto functions f are there with the following domains and codomains? 

 

(a)  :{1,2,3,4,5} {1,2,3,4,5,6}f →  (b)  :{1,2,3,4,5,6} {1,2,3,4,5,6}f →  
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(c)  :{1,2,3,4,5,6} {1,2,3,4,5}f →  (d)  :{1,2,3,4,5,6,7} {1,2}f →  
 

 
38. (a)  If A is a finite set with n elements, show there are 2 2n − different onto functions 

: {1,2}.f A→  
(b)  How many onto functions are there of the form :{1,2,3,4,5,6,7} {1,2,3}?f →  
Suggestion:  For Part (a) notice that any nonconstant function is onto.  For Part (b), use the 
result of Part (a) in counting separately the (disjoint) cases where 1| ({3}) | 1, 2,3, 4, or 5.f − =  

 
39. Prove that for nonnegative integers n, m, and r, with  0 min( , ),r n m≤ ≤  we have 

 
0

. .
r

k

n m n m
k r k r

=

+    =    −    ∑  

Suggestion:  This result generalizes that of Exercise 23; the suggestion given there can be 
modified for the present needs.  

 
40. Prove Theorem 5.9. 
 

41. Prove the following identity:  1
0 2 .n n

k
nk nk

−
=

  = ⋅ 
 ∑  

Suggestion:  An elegant combinatorial proof can be achieved by counting the number of ways 
to form a committee (from a group of n individuals), along with a distinguished chairperson.  
The left and right sides of the identity outline two different schemes for counting the total 
number of such committees.     

 

42. Prove the following identity:  
2

0

2 1 .1
n

k

n nk nk n
=

−   = ⋅   −   ∑  

Suggestion:  A combinatorial proof can be given using an idea similar to that given in the 
suggestion of the preceding exercise.  This time, the committee is formed from two separate 
groups of individuals and the chairperson is taken from the first group.  

 
43. Give a combinatorial proof of the following identity, which is valid for 1 :k n≤ ≤   

1 .1
n nk nk k

−   =   −   
 

 
44. Give a combinatorial proof of the following identity, which is valid for 1 :k n≤ ≤   

1 .1
n

j k

n j
kk

=

−   =    −   ∑  

 
 

5.3:  GENERATING FUNCTIONS 
 
In this section we will develop a very effective tool for analyzing sequences 
relating to combinatorial problems. This tool is based on storing the terms of the 
sequence as coefficients of a formal power series.   The resulting formal power 
series is called the generating function for a given sequence.  Generating functions 
can be manipulated by a set of natural rules, which are motivated by the ordinary 
arithmetic of polynomials, allowing one to operate on the whole sequence at once, 
and these concepts give them surprising power that can be used to solve seemingly 
intractable problems.   Many useful properties about the convergence of power 
series are proved in calculus books.  This section will develop generating functions 
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from a non-calculus perspective.  Although some facts will be “borrowed” from 
calculus, our treatment will be entirely self-contained.  We will thus bypass details 
concerning the convergence of series, and merely perform formal manipulations 
on them and show how to apply such manipulations to solve an assortment of 
combinatorial problems.   
 
Generating Functions and Power Series 
 
 
DEFINITION 5.4:  For any sequence 0 1 2, , ,a a a   of real numbers, the 
corresponding (ordinary) generating function of the sequence is the following 
formal infinite power series:   

2
0 1 2

0
( ) .n

n
n

G x a a x a x a x
∞

=

= + + + =∑  

 
We use the function notation on the left of the above equation, even though the 
infinite series may not define much of a function.  Such an infinite series of 
increasing nonnegative powers of the variable x with real number coefficients is 
called a power series.    
 
NOTE:   Power series are studied in standard calculus courses (usually in the 
second semester).   If we substitute x = 0 into any power series, the series becomes 

2
0 1 2 0 00 0 0 0 .a a a a a+ ⋅ + ⋅ + = + + + =   Although it is impossible to perform 

the infinite number of additions required in a general power series (when a 
nonzero number x is substituted),  there are circumstances when the infinite sum 
makes sense (in which case we say it converges), and in such a case it can be 
evaluated to any degree of accuracy by adding up a sufficiently large finite number 
of its terms.  For any power series there always exists a number R (called the 
radius of convergence of the power series)  in the range 0 ,R≤ ≤ ∞  such that the 
power series converges for all x in the range | | ,x R<  but does not converge for 
any x in the range | | .x R>   It is possible that R = 0 (in which case the series 
converges only when x = 0), but in all other cases the power series truly equals 
some function of x within the radius of convergence.  In such cases, we identify 
the series with the function that it defines, i.e., both are considered to be the 
generating function of the sequence.      
 
In this section the adjective “ordinary” (for generating functions) will be redundant 
since this will be the only sort of generating functions that will be considered.   
More extensive treatments consider other useful generating functions, such as 
exponential generating functions; see, for example, [Wil-90].   Throughout this 
section we shall treat generating functions essentially as formal objects, not 
concerning ourselves with the question of whether the infinite series converges for 



 
any nonzero numbers x.7   We will present closed formulas for a few key 
generating functions (i.e., the function formula equals the power series within a 
positive radius of convergence), but the calculus details will be omitted.   
 
EXAMPLE 5.16:   Determine the generating functions of the following 
sequences: 
(a)  1 ( 0,1,2, )na n= =               
(b)  ! ( 0,1,2, )na n n= =     
(c)  0 1 2 31, 1, 1, 1a a a a= = = =  
NOTE:  For any finite sequence as in Part (c), in order to form the generating 
function, the remaining terms are assumed to be zero.   Thus the power series will 
just be a finite sum, and will define a polynomial. 
 
 
SOLUTION:   
Part (a):  The generating function is 2

0( ) 1 .n
nG x x x x∞

=
= + + + = ∑    Example 

5.18 presents an explicit formula for the function defined by this power series. 
Part (b):  The generating function is 2( ) 1 2 ! nG x x x n x= + + + + + =   

0 ! .n
n n x∞

=∑  

Part (c):  The generating function is the polynomial 2 3( ) 1 .G x x x x= + + +  
 
Algebraic identities sometimes allow us to express polynomials (finite power 
series) as single mathematical expressions. The next example will provide a few 
such simplifications.   
 
EXAMPLE 5.17:  For each part, express the polynomial generating function 
defined by the sequence of coefficients as a single-term closed-form algebraic 
expression:  
(a)   0 1 2 3 41, 2, 4, 8, 16a a a a a= = = = =  
(b)   0 2( ,0), ( ,1), , ( , ),na C n a C n a C n n= = =  where n is a positive integer.   
 
SOLUTION:  
Part (a):  The generating function for the given sequence is 21 2 4x x+ + +  

3 4 0 1 2 3 48 16 (2 ) (2 ) (2 ) (2 ) (2 ) ,x x x x x x x+ = + + + +  which is a finite geometric 
series (see Proposition 3.5 of Section 3.1), so by formula (3) of Chapter 3, it can 
be rewritten as:  5 5((2 ) 1) /(2 1) (32 1) /(2 1).x x x x− − = − −  

Part (b):     The generating function for the given coefficients is 
0

( , ) .n k
k

C n k x
=∑   

Using the binomial theorem (formula (6) of Theorem 5.7):  

 
7 For readers who have studied calculus, when the series converges for nonzero values of x, the 
resulting function will coincide with the generating function, and the series will be its so-called Taylor 
series.  This gives another way to view the coefficients in terms of derivatives of the generating 
functions.    
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0 0
( ) ( , ) ,

n n
n k n k k n k

k k

nx y x y C n k x yk
− −

= =

 + = = 
 ∑ ∑  

 

and substituting y = 1, gives us 
0

(1 ) ( , ) .
n

n k

k
x C n k x

=

+ =∑   The left side is the 

factored form of the polynomial generating function for the sequence of binomial 
coefficients.   
 
Such algebraic conversions for polynomials in the above example can be extended 
to a great variety of infinite power series by making use of some key (building 
block) closed-form expressions for power series that will be borrowed from 
calculus.  Our next example provides an important generating function for a very 
simple sequence:  the sequence of constant 1s:       
 
EXAMPLE 5.18:  Part (a):  In calculus courses, it is proved that the generating 
function of the infinite sequence of 1s:   0 1 31, 1, 1 ,a a a= = =   is the function 
1/(1 ),x−  and furthermore that the power series equals the function when | | 1:x <  
 

 2

0

1 1 .
1

n

n
x x x

x

∞

=

= + + + =
− ∑  (8) 

 
Another useful generating function corresponds to the sequence of reciprocal 
factorials:  1/ !,na n=  and is the exponential function .xe   The following equality 
is valid for all real numbers x:   
 

 
2 3

0
1 .

2! 3! !

n
x

n

x x xe x
n

∞

=

= + + + + = ∑  (9) 

 
Part (b):   Use (8) to find a closed expression for the generating function of the 

sequence {1, if  is even.0, if  is oddn
na n=  

 
SOLUTION: Part (b):   The generating function of the sequence is 

2 3 2 4 6( ) 1 0 1 0 1 .G x x x x x x x= + ⋅ + ⋅ + ⋅ + = + + +      If we make the 
substitution 2x x  in (8) (which will be a valid equation if | | 1),x < we arrive at:   

2 4 2
2

0

1 1 ,
1

n

n
x x x

x

∞

=

= + + + =
− ∑  

which gives an explicit formula for the generating function at hand.   
 
 
 
 



 
 
Arithmetic of Generating Functions 
 
 
Polynomials, i.e., functions of the form  

2
0 1 2

0
,

d
d n

d n
n

a a x a x a x a x
=

+ + + + = ∑  

are determined by a finite sequence of coefficients 0 1 2, , , , da a a a (which we 
assume to be real numbers). They are the generating functions for their sequence 
of coefficients.   They serve as good motivators for the arithmetic of more general 
formal power series (i.e., generating functions).  When we write down a 
polynomial, unless all of its coefficients are zero (the zero polynomial) in the 
representation above, we may always assume that the leading coefficient, ,da  is 
nonzero.  In this case the polynomial is said to have degree d (the highest power 
that appears with a nonzero coefficient).   
 
Since polynomials (finite power series) define functions on the entire domain of 
real numbers, these generating functions can be identified with the functions that 
they represent.   
 
Polynomials can be added/subtracted term-by-term, and two polynomials can be 
multiplied in the usual fashion that is taught in basic algebra using the rules 

n m n mx x x +=  and 0 1.x =   For example, to multiply two general third degree 
polynomials,  
 

2 3 2 3
0 1 2 3 0 1 2 3( ) ( ),a a x a x a x b b x b x b x+ + + ⋅ + + +  

 

we could start off as follows: 
 

2 3
0 0 0 1 1 0 0 2 1 1 2 0 0 3 1 2 2 1 3 0( ) ( ) ( ) ( ) .a b a b a b x a b a b a b x a b a b a b a b x+ + + + + + + + + +  

 

For higher powers (up to six), the coefficients are composed of fewer and fewer 
terms, and thus the computations are simplified.   The degree four (next) term is: 
 

4
1 3 2 2 3 1( ) .a b a b a b x+ +  

If we adopt the convention indicated above that unlisted coefficients are assumed 
to be zero, we could rewrite this degree four term to fit the general pattern of the 
first three:  
 

4
0 4 1 3 2 2 3 1 4 0( ) .a b a b a b a b a b x+ + + +  

 
This latter approach, although more complicated for polynomials, leads to the 
definition of multiplication of formal power series that is included in Part (c) of 
the following definition: 
 
DEFINITION 5.5:  (Arithmetic of Generating Functions/Formal Power Series): 
Suppose we have two generating functions 0 0( ) , ( ) .n n

n nn nF x a x G x b x∞ ∞

= =
= =∑ ∑     

(a)  The sum of these generating functions is  
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0( ) ( ) ( ) .n
n nnF x G x a b x∞

=
+ = +∑  

 

(b)  The difference of these generating functions is  

0( ) ( ) ( ) .n
n nnF x G x a b x∞

=
− = −∑  

 

(c)  The product of these generating functions is  

( )0 1 1 2 2 00 0 0( ) ( ) ( ) .nn n
n n n n k n kn n kF x G x a b a b a b a b x a b x∞ ∞

− − −= = =
⋅ = + + + + =∑ ∑ ∑  

 
Calculus books prove that if the series for ( )F x and ( )G x  both have positive radii 
of convergence, then the formally defined series above really do correspond to the 
generating functions for the sum, difference, and product of ( )F x and ( ),G x and 
the equations will be valid if | |x  is less than the minimum of the two radii of 
convergence.  
 
EXAMPLE 5.19:  Find a formula for the nth coefficient na of the sequence whose 
generating function is given by /(1 ).xe x−  
 
SOLUTION:  We will use Part (c) of Definition 5.5, along with equations (8) and 
(9): 
 

( )
2 3

2 3

2 3

1 1 1
1 1 2! 3!

1 1 11 1 (1 1 1 1) 1 1 1 1 1 1 1 1 1 1 1 .
2! 2! 3!

x
xe x xe x x x x

x x

x x x

 
= ⋅ = + + + + ⋅ + + + + − −  

   = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +   
   

 



 

 
The pattern has quickly revealed itself, and we may write 0/(1 ) ,x n

nne x a x∞

=
− = ∑  

where 
0

1 1 1 1 1 .
0! 1! 2! ! !

n

n
k

a
n k=

= + + + + = ∑  

 
From Definition 5.5, it is clear that the generating function 0 (corresponding to the 
infinite sequence of zeros:  0)na = serves as the additive identity, and the 
generating function 1, corresponding to the sequence 1 1, 0,na a= =  if 0,n ≠  
serves as the multiplicative identity.  Put differently, if ( )F x is any generating 
function, then ( ) 0 ( )F x F x+ = and ( ) 1 ( ).F x F x⋅ =  
 
EXERCISE FOR THE READER 5.17:  Obtain closed-form expressions for the 
following generating functions. 

(a)  2 3 4

2

n

n
x x x x

∞

=

+ + + =∑                      (b)  
2 34 8(1 ) 1 2 .

2! 3!
x xx x

 
− + + + + 

 
  

 



 
The Generalized Binomial Theorem 
 
 
The binomial generating function that was obtained in Example 5.17: 

0
(1 ) ,

n
n k

k

nx xk
=

 + =  
 ∑  

has a very useful extension to non-integer powers.  In order to state the result, it is 

convenient to generalize the definition of the binomial coefficients n
k
 
 
 

 for non- 

integer values of n.  The following definition does this using a formula that is 
equivalent to the formula (4) for (ordinary) binomial coefficients in case n is a 
nonnegative integer. 
 
DEFINITION 5.6:  If a is a real number and k is a nonnegative integer, we define 

the generalized binomial coefficient a
k
 
 
 

 by the formula: 

( 1)( 2) ( 1) , if  > 0,
!

1, if  = 0.

a a a a k ka kk
k

− − − +
  =  

  



 

 
 

EXAMPLE 5.20:  Compute the generalized binomial coefficient 3 / 2 .4
 
 
 

 

 
SOLUTION:  Substituting a = 3/2 and k = 4 into the formula of the above 
definition gives:   

(3 / 2)(1/ 2)( 1/ 2)( 3 / 2) 33/ 2 .4 4! 128
− −  = = 

 
 

 
EXERCISE FOR THE READER 5.18:   If a is a negative integer: ,a n= −   show 

that the generalized binomial coefficient a
k
 
 
 

 can be expressed using ordinary 

binomial coefficients as follows: ( 1) ( 1, ).ka C n k kk
  = − + − 
 

  

 
We are now ready to state the generalized binomial theorem that provides a 
generating function power series expansion for (1 ) ,ax+ where a is any real 
number.  Unless a is a nonnegative integer, the power series will be an infinite 
series.   
 
THEOREM 5.11:  (The Generalized Binomial Theorem) If a is any real number, 
and x is a real number with | | 1,x <  then 
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 2 3

0
(1 ) 1 .1 2 3

a n

n

a a a ax x x x xn
∞

=

       + = + + + + =       
       ∑  (10) 

 

We point out that in case a is a positive integer, then (by Definition 5.6) 0a
k
  = 
 

 

whenever ,k a> so the expansion (10) is a finite series and (10) reduces to the 

ordinary binomial theorem (Theorem 5.7), but in all other cases, 0a
k
  ≠ 
 

 for all 

positive integers k, so (10) is really an infinite series.   
 
EXAMPLE 5.21:  Apply the generalized binomial theorem to find power series 
expansion for the following function:  21/(1 ) .x−  
 
SOLUTION:  If we substitute 2,a x x− −   into (10), the following expansion 
that is valid for | | 1x <  results: 
 

2 3
2

0

1 2 2 2 21 ( ) ( ) ( ) ( ) .1 2 3(1 )
n

n
x x x xnx

∞

=

− − − −       = + − + − + − + = −       −        ∑  

 

Since 2( 3)( 4) ( 2 1) ( 1) 2 3 4 ( 1)2 ( 1) ( 1),
1 2 3 1 2 3

n
nn n nn n n

− − − − − + − ⋅ ⋅ +−  = = = − +  ⋅ ⋅ ⋅ ⋅ 
 

 

 

 
the above expansion becomes: 
 

2 3 2 3
2

0

1 1 2( ) 3( ) 4( ) 1 2 3 4 ( 1) .
(1 )

n

n
x x x x x x n x

x

∞

=

= + − − + − + − − + = + + + + = +
− ∑   

 
 
This expansion could have also been obtained by multiplying that of (8) by itself 
(using Definition 5.5(c)).   Since it is often useful, we record it as numbered 
equation for future reference (the equality is valid when | | 1):x <  
 

 2 3
2

0

1 1 2 3 4 ( 1) .
(1 )

n

n
x x x n x

x

∞

=

= + + + + = +
− ∑  (11) 

 
The following more general expansion will often be useful; its justification is 
similar to the argument in Example 5.21, and is left as the next exercise for the 
reader.    If n is a positive integer and | | 1,x <  then we have: 
 



 

 
2 3

0

1 1 ( ,1) ( 1,2) ( 2,3)
(1 )

( 1, 1) .

a

n

n

C a x C a x C a x
x

C n a a x
∞

=

= + + + + + +
−

= + − −∑



 
 

(12) 

 
 
EXERCISE FOR THE READER 5.19:  Establish the power series expansion (12). 
 
 
EXERCISE FOR THE READER 5.20:  Determine the power series expansion for 
the function 1 / 2.x+  
 
 
Using Generating Functions to Solve Recursive 
Sequences 
 
Now that we have presented a decent collection of generating functions, it is time 
to show their usefulness in combinatorics.  We will begin by demonstrating some 
general schemes by which generating functions can be used to solve recursive 
relations.  We begin with an easy example for which an explicit formula can 
quickly be deduced without much work. 
 
EXAMPLE 5.22:   Consider the recursively defined sequence:  

 { 0

1

1
2 1 ( 1).n n

a
a a n−

=
= + ≥  

 
An explicit formula for this sequence can be easily obtained, for example, by 
computing the first few terms:  1 2 3 43, 7, 15, 31,a a a a= = = =  and discovering the 
pattern 12 1,n

na += −  which can then be established by induction (see also Example 
3.6).   We will use this example to showcase how generating functions can be used 
to solve recursive relations.   Instead of working with the terms of the sequence, 
we will consider the generating function for this sequence:  0( ) ,n

nnF x a x∞

=
= ∑  and 

use the given recurrence relation to obtain a closed from expression for this 
function.  We multiply both sides of the recurrence relation by ,nx  and then take 
the formal (infinite) sum of both sides in the range 1n ≥  where the recurrence is 
valid:   
 

1 1
1 1 1

2 1 ( 1) 2 1 .n n n
n n n n

n n n
a a n a x a x x

∞ ∞ ∞

− −
= = =

= + ≥ ⇒ = + ⋅∑ ∑ ∑  

 
Now let us look at each of these three formal sums and aim to find the 
corresponding generating functions.   The first sum is just 
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01 0 ( ) 1.n n
n nn na x a x a F x∞ ∞

= =
= − = −∑ ∑  

 

Relating the second formal sum to ( )F x requires a slightly different manipulation: 
 

1
1 11 1 02 2 2 2 ( ).n n n

n n nn n na x x a x x a x xF x∞ ∞ ∞−
− −= = =

= = =∑ ∑ ∑  
 

The third formal sum is closely related to the expansion (8): 
 

1 0

11 1.
1

n n

n n
x x

x

∞ ∞

= =

= − = −
−∑ ∑  

Thus, the formal series equation above corresponds to the following equation for 
the generating function ( ):F x   
 

1 1 1( ) 1 2 ( ) 1 (1 2 ) ( ) ( ) .
1 1 (1 )(1 2 )

F x xF x x F x F x
x x x x

− = + − ⇒ − = ⇒ =
− − − −

 
 

This generating function determines the entire sequence ( ).na   In order to obtain 
an explicit formula for the terms of the sequence, we use the partial fractions 
method 8 of algebra to expand the expression on the right side: 
 

1 .
(1 )(1 2 ) (1 ) (1 2 )

A B
x x x x

= +
− − − −

 
 

To determine the constants A and B on the right side, we first multiply both sides 
of the equation by the denominator on the left to obtain:   
 

1 (1 2 ) (1 ).A x B x= − + −  
 

If we substitute x = 1 into this equation, we obtain 1,A = −  and substituting  x = 
1/2 produces 2.B =    The original equation now gives:   

1 2( ) .
(1 ) (1 2 )

F x
x x

−
= +

− −
 

 
Each of the terms on the right can easily be expanded using (8): 
 

 
8 The partial fractions expansion applies to any quotient of polynomials ( ) / ( ),P x Q x  where the degree 
of the numerator is less than that of the denominator, and the denominator ( )Q x  is factored into 

powers of distinct linear factors ( ) ,kx a−  where a  is a complex number.   Each factor of ( )Q x  of 

form ( )kx a−  gives rise to a sum of terms of form:  1 2 2
2 ,

( ) ( )k
A A A

x a x a x a
+ + +

− − −
  where 

1 2, , , kA A A  are constants, in the partial fraction expansion.   Each such term can be expanded into a 
power series using (12).      If ( )P x  were to have higher degree than ( ),Q x  a long division of 
polynomials could be used to rewrite ( ) / ( )P x Q x  as a sum of a polynomial and ( ) / ( ),R x Q x  where the 
remainder ( )R x has smaller degree than ( ).Q x   Technical note:  Although the examples and exercises 
given in this book will involve only real numbers, the methods that we develop still work in cases of 
complex numbers (because (12) remains valid if x is a complex number of modulus less than 1).   



 
1

0 0 0

1/ 2 2( ) 1 2 (2 ) (2 1) .
(1 ) (1 2 )

n n n n

n n n
F x x x x

x x

∞ ∞ ∞
+

= = =

= + = − + = −
− − ∑ ∑ ∑  

 
Thus we have found that 12 1.n

na += −  
 
Although the heavy machinery developed in this example was not really needed, 
the generating function method can be used in the same fashion to solve 
recurrences that are not so easily solved by other means.   This is one of the 
beauties of the generating function method.   
 
EXERCISE FOR THE READER 5.21:  Use the generating function method of the 

previous example to solve the recurrence:   { 0

1

1
3 1 ( 1).n n

a
a a n−

=
= − ≥  

 
Our next example involves a recurrence whose solution is not so amenable to 
discovery as in the preceding example. 
 
EXAMPLE 5.23:   Use the method of generating functions (as developed in 
Example 5.22) to determine an explicit formula for the following recursively 
defined sequence:  

 { 1

1

4
3 2 1 ( 2).n n

a
a a n n−

=
= + − ≥  

 
SOLUTION:   In order to facilitate the use of generating functions, we extend the 
definition of the sequence to define 0a  in a way that will make the recursion 
formula valid for n = 1 (and hence for 1).n ≥    If we use the recursion formula 
with n = 1:  1 03 2 1 1,a a= + ⋅ −  substitute 1 4,a =  we obtain 0 1.a =  

Following the method of the preceding example, we let 0( ) n
nnF x a x∞

=
= ∑  be the 

generating function for the given sequence, multiply both sides of the recurrence 
relation by ,nx  and then take the formal (infinite) sum of both sides in the range 

1n ≥  (where the recurrence is valid):   
 

1 1
1 1 1 1

3 2 1 ( 1) 3 2 .n n n n
n n n n

n n n n
a a n n a x a x nx x

∞ ∞ ∞ ∞

− −
= = = =

= + − ≥ ⇒ = + −∑ ∑ ∑ ∑  

 

Three out of the four sums on the right can be converted to closed-form 
expressions as in the preceding example.  The second sum on the right can be 
converted using the expansion (11) as follows: 
 

1
2

1 1 0

22 2 2 ( 1) .
(1 )

n n n

n n n

xnx x nx x n x
x

∞ ∞ ∞
−

= = =

= = + =
−∑ ∑ ∑  

 
Hence, the preceding equation involving four power series transforms into: 
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2
2 1( ) 1 3 ( ) 1.

(1 ) 1
xF x xF x
x x

− = + − +
− −

 

Solving this equation for ( )F x and converting to a single term gives us: 
 

2

2
2 1( ) .

(1 3 )(1 )
x xF x

x x
− +

=
− −

 

 
The partial fractions expansion will have the form: 
 

2

2 2
2 1( ) .

(1 3 )(1 ) 1 3 1 (1 )
x x A B CF x

x x x x x
− +

= = + +
− − − − −

 

 
To determine the three constants A, B, C, we first clear out all denominators: 
 

2 22 1 (1 ) (1 )(1 3 ) (1 3 ).x x A x B x x C x− + = − + − − + −  
 

Substituting x = 1 yields 1.C = −   Substituting x = 1/3 yields 2,A =  and finally 
substituting x = 0 (or any third number) yields  0.B =   Thus we have determined 
the partial fractions expansion of the generating function to be: 

2

2 1( ) .
1 3 (1 )

F x
x x

= −
− −

 

Applying the expansions (8) and (11) allows us to determine the corresponding 
single power series expansion: 
 

2
0 0 0

2 1( ) 2 (3 ) ( 1) (2 3 1) .
1 3 (1 )

n n n n

n n n
F x x n x n x

x x

∞ ∞ ∞

= = =

= − = − + = ⋅ − −
− − ∑ ∑ ∑  

 
We have thus arrived at the following closed formula for the given recursively 
defined sequence:  2 3 1.n

na n= ⋅ − −   
 
EXERCISE FOR THE READER 5.22:  Use the generating function method to 

solve the recurrence:   0

1

1
2 3 ( 1).n

n n

a
a a n−

=
 = + ≥

 

 
 
Whereas the methods of Section 3.2 (see Theorems 3.7, 3.8, and 3.9, and the 
examples given) could have also been applied to solve the recurrences of the 
preceding example, our next example is not amenable to the theory of Section 3.2, 
since the formula for the nth term involves all previous terms (rather than a fixed 
number of them).   
 
 
 
 



 
EXAMPLE 5.24:   Obtain an explicit formula for the following recursively 
defined sequence: 

0

0

1
4 ( 1).4

n

k n k
k

a
n a a n−

=

=

 +  = ≥  

∑
 

 
 

SOLUTION:  We first note that the recurrence equation 
0

4
4

n

k n k
k

n a a −
=

+  = 
  ∑  

remains valid when n = 0, and hence is valid for all nonnegative integers n.  If, as 
usual, we let 0( ) n

nnF x a x∞

=
= ∑  be the generating function for the given sequence, 

we first observe from Definition 5.5(c) that sequence formed by the right side of 
the recursion formula has the generating function 2( ) .F x     Also, from (12) we see 

that the coefficients 4
4

n + 
 
 

 have the generating function 5
1 .

(1 )x−
   It follows 

that if we multiply both sides of the recurrence relation by ,nx  and then take the 
formal (infinite) sum of both sides in the range 0n ≥  (where the recurrence is 

valid) the resulting equation   
0 0 0

4
4

n
n n

k n k
n n k

n x a a x
∞ ∞

−
= = =

 +  =      
∑ ∑ ∑  corresponds to the 

equation 5 2(1 ) ( ) ,x F x−− =   from which it follows that 5/ 2( ) (1 ) .F x x −= −    We 
may apply the generalized binomial Theorem 5.11 (formula (10)) to obtain the 
expansion of this generating function:   
 

2 3

0

5 / 2 5/ 2 5/ 2 5/ 2( ) 1 ( ) ( ) ( ) ( ) .1 2 3
n

n
F x x x x xn

∞

=

− − − −       = + − + − + − + = −       
       ∑  

 

But since  ( 5 / 2) ( 7 / 2) ( 2 3 / 2) 5 7 (2 3)5 / 2 ( 1) ,
! 2 !

n
n

n n
n n n

− ⋅ − − − ⋅ +−  = = − 
 

   we 

obtain the desired explicit formula 5 7 (2 3) .
2 !n n

na
n

⋅ +
=

  

 
EXERCISE FOR THE READER 5.23:  Use the generating function method to 
derive the explicit formula given in equation (4) of Chapter 3 for the famous 
Fibonacci sequence (first introduced in Example 3.7) that is recursively defined 

by:   { 1 2

1 2

1, 1,
( 3).n n n

f f
f f f n− −

= =
= + ≥  
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Using Generating Functions in Counting 
Problems 
 
Generating functions can be used for a variety of counting problems.  The hand 
computations that arise with such methods are typically quite laborious, so it is 
most convenient to make use of computers for such tasks.  The computer 
implementation material at the end of this chapter contains some useful 
information in this regard.    
 
In order to motivate the concepts, we begin by redoing the simple Example 5.16, 
which was used in Section 5.2 to motivate a general partitioning argument.  This 
example will again serve as a motivating example for the application of generating 
functions to counting problems.   
 
EXAMPLE 5.25:  (Motivating Example for Counting Techniques Using 
Generating Functions) Joey has five identical chocolate bars that he plans to give 
to his three cousins, Abby, Billy, and Christy. Use generating functions to 
determine the number of different ways that Joey can distribute these bars among 
his cousins. 
 
SOLUTION:  Each cousin can receive from zero to five bars, and this gives rise to 
the generating polynomial 0 2 3 4 51( ) .x x x x x x= + + + + +    The exponent 
represents the number of candy bars the particular cousin receives; since there are 
no differences on how Joey can distribute the bars to his three cousins, the three 
generating functions are the same.    
 
We claim that the number of solutions to the problem is the coefficient of 5x  in 
the product of the three generating polynomials:  2 3 4 5 3(1 ) ,x x x x x+ + + + +   the 
latter being the generating function for the problem.  The reason is that the 5x  
term in the product is the sum of all terms of the form ,A B Cx x x  where Ax  is taken 
from the first factor (and A represents the number of bars Alice receives), Bx  is 
taken from the second factor (corresponding to Billy receiving B bars), Cx is taken 
from the third factor, and 5.A B C+ + =   There is thus a one-to-one 
correspondence between the ways that Joey can distribute the five bars among his 
three cousins, and the terms A B Cx x x  that arise in expanding the product of the 
three (in this case identical) generating polynomials of the three cousins.  A 
computation (best done on a computer) shows the coefficient of 5x  in the 
expansion of 2 3 4 5 3(1 )x x x x x+ + + + +  to be 21, in agreement with the solution to 
Example 5.16.   
 
The generating function approach to counting is much more versatile than some of 
the specialized techniques introduced in Section 5.2.   The next example is a 
variation of the previous one that is not so clearly solvable using the techniques of 



 
Section 5.2, but is easily solved by the same technique introduced in the solution 
of Example 5.25. 
 
EXAMPLE 5.26:   Joey has five identical chocolate bars that he plans to give to 
his three cousins, Abby, Billy, and Christy. Use generating functions to determine 
the number of different ways that Joey can distribute these bars to his cousins 
under the following constraints:  Abby must get at least one bar and Billy must get 
an even number of bars. 
 
SOLUTION:  There are no constraints on the number of bars that Christy can 
receive so her generating function is exactly as it was in Example 5.25:  

0 2 3 4 5( ) 1( ) .CF x x x x x x x= = + + + + +   Since Abby must receive at least one bar, 
her generating function is the same but without the 01( )x=  term (since we need to 
omit the option of giving her zero bars):  2 3 4 5( ) .AF x x x x x x= + + + +   Finally, 
Billy’s generating function is obtained from Christy’s by removing all of the odd 
powers of x:  0 2 4( ) 1( ) .BF x x x x= = + +   The generating function for the whole 
problem is the product of these three: 
 

2 3 4 5 2 4 2 3 4 5( ) ( ) ( ) ( ) (1 ) (1 ).A B CF x F x F x x x x x x x x x x x x x⋅ ⋅ = + + + + ⋅ + + ⋅ + + + + +
 
The number of ways in which Joey can distribute the five bars subject to the given 
constraints is the coefficient of 5x  in this product.   This coefficient can be easily 
computed with the aid of a computer (or with a hand computation), and is 9. 
 
NOTE:   The generating functions for such counting problems actually contain 
much more information than is typically used.   In Example 5.26, the expanded 
form of the generating function is:  
 

2 3 4 5 6 7

8 9 10 11 12 13 14
( ) ( ) ( ) 2 4 6 9 11 12

12 11 9 6 4 2 .
A B CF x F x F x x x x x x x x

x x x x x x x
⋅ ⋅ = + + + + + +

+ + + + + + +
 

 
Each coefficient of a certain power nx  in this expansion gives the number of ways 
that Joey could give out n bars to his three cousins subject to the constraints 
represented by the generating functions (at most 5 bars can be given to any cousin 
since 5x  is the highest power appearing in each cousin’s generating function).  So 
for example, the coefficient of x is 1, corresponding to the fact that there is only 
one way for Joey to give out just one bar to his three cousins, due to the constraint 
that Abby must get at least one bar:  Abby:  1,  Billy:  0, Christy:  0.   Similarly, 
the coefficient of 2x  being 2 corresponds to the fact that the following are the only 
ways that Joey could distribute two bars to his cousins under the specified 
constraints:  (i)  Abby: 1,  Billy: 0, Christy: 1, or (ii)  Abby:  2, Billy: 0, Christy: 0. 
 
EXERCISE FOR THE READER 5.24:  A winner of a contest is allowed to 
(blindly) draw (and keep) exactly four bills from an urn that contains ten $1 bills, 
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five $10 bills, and two $100 bills.    How many different combinations of bills 
could be chosen?   What if instead of four bills, six bills are chosen? 
 
Note that in both of the above examples, we could have added higher powers of x:  

6 7, ,x x   to each of the three generating functions (Abby’s, Billy’s, and Christy’s) 
because when we looked for the coefficient of 5 ,x such higher degree terms would 
not contribute to this lower degree term.  Thus, we could have even used infinite 
series for these generating functions.   Since we do have explicit closed formulas 
for an assortment of infinite power series, it is sometimes convenient to use 
infinite power series for generating functions in counting problems. 
 
 
EXAMPLE 5.27:   Use generating functions to give another proof of Theorem 
5.10:   (Distribution of identical objects to different places)  The number of ways 
to distribute n identical objects to d different (distinguishable) places is given by 

( 1)
.

1
n d

d
+ − 

 − 
 

 
SOLUTION:  Although the first idea for the generating function for the number of 
objects that are placed in the ith place (1 )i d≤ ≤  would be 21 nx x x+ + + +  
(since there are only n objects in totality that can be placed), it will be more 
convenient to use the infinite power series:  21 .x x+ + +   The resulting 
generating function for the whole counting problem is just the product of these d 
identical individual generating functions 2(1 ) 1/(1 ) .d dx x x+ + + = −   The 
number of ways to distribute n identical objects to d different (distinguishable) 
places is then the coefficient of nx  in this expansion. By (12) (with a = d) this 
coefficient is ( 1, 1),C n d d+ − −  and the proof is complete.   
 
 
 
 

 

EXERCISES 5.3: 
 
NOTE:  As pointed out in the section proper, calculating coefficients of generating functions is 
sometimes not feasible without the aid of a computer.   In cases where such situations arise in the 
exercises below, readers who do not have access to an appropriate computing system might choose to 
pass up hand computations of such coefficients.   While symbolic and/or computer algebra systems are 
very well suited for the polynomial manipulations needed in such calculations, the computer 
implementation material at the end of this section will provide details on performing such computations 
on any standard computing platform.   
 
 

1. Write down the generating function for each of the following sequences: 
(a)  ( 1) ( 0,1,2, )n

na n= − =                              (b)  0 2 4 66, 4, 2, 1a a a a= = = =   
 
2. Write down the generating function for each of the following sequences: 



 
(a)  32 ( 0,1,2, )n

na n+= =                                (b)  1 2 3 82, 4, 2, 4a a a a= = = =   
 
3. For each of the following finite sequences, (i) write down the (polynomial) generating function, 

and (ii) if possible use either the binomial theorem (Theorem 5.7) or the formula for finite 
geometric series (Theorem 3.5) to express the function as a closed-form expression. 
(a)  ( 1) ( 0,1,2, ,10)n

na n= − =       

(b)  (10, ) ( 0,1,2, ,10)na C n n= =    

(c)   0 1 2 3 420, 40, 80, 160, 320a a a a a= = − = = − =  
(d)  (5, 2) ( 2,3,4,5,6,7)na C n n= − =   

 
4. For each of the following finite sequences, (i) write down the (polynomial) generating function, 

and (ii) if possible use either the binomial theorem (Theorem 5.7) or the formula for finite 
geometric series (Theorem 3.5) to express the function as a closed-form expression. 
(a)  0 1 2 3 46, 3, 3/ 2, 3/ 4, 3/8a a a a a= = = = =      

(b)  (10,10 ) ( 0,1,2, ,10)na C n n= − =    

(c)   0 1 2 3 410, 30, 90, 270, 810a a a a a= = = = =  
(d)  2 (4, ) ( 0,1,2,3,4)n

na C n n= =   
 
5. Obtain closed-form algebraic expressions for the generating functions defined by the following 

infinite sequences: 
(a)  ( 1) ( 0,1,2, )n

na n= − =       

(b)  ( 2) / ! ( 0,1,2, )n
na n n= − =   

(c)  1 5, ( 1) ( 0,2,3, )n
na a n= = − =       

(d)  1/( 2)! ( 0,1,2,3, )na n n= + =   
 
6. Obtain closed-form algebraic expressions for the generating functions defined by the following 

infinite sequences: 

(a)  {0,  if  0,2,4  
2, if  1,3,5n

na n
== − =





 

(b) 
/ 2( 1) ,  if  0,2,4  

0, if  1,3,5
n

n
na
n

 − ==  =




  

(c)  
2, if  0,1,2
0,  if  2,4,6  

2, if  3,5,7
n

n
a n

n

== =
− =





    

(d)  0 1 1, 1/( 2)! ( 2,3,4 )na a a n n= = = − =   

(e)  13 /( 2)! ( 0,1,2,3, )n
na n n−= + =   

 
7. Determine the sequence corresponding to each of the following closed-form expressions for 

generating functions. 
(a)  3 4( 5)x x +                              (b)  3 5(1 )x x− −                         (c)  1/(1 3 )x+      

(d)  1/(1 ) /(1 2 )x x x+ − −              (e)  1/[(1 )(1 2 )]x x+ −                    (f)  2 2(1 )xe x−      
 
8. Determine the sequence corresponding to each of the following closed-form expressions for 

generating functions. 
(a)  2 4(1 2 )x x−                            (b)  4 3( 3)x x+ +                        (c)  2/(1 )x x+      

(d)  21/(1 ) /(1 2 )x x x+ − −            (e)  2/[(1 )(1 2 )]x x x+ −                  (f)  2 (1 ) xx x e−+      
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9. Determine the coefficient of 8x in each of the following expansions. 

(a)  2 3 2 4 6 3 6 9(1 )(1 )(1 )x x x x x x x x x+ + + + + + + + +                              

(b)  2 3 3(1 )x x x+ + +     

(c)  2 3 2 4 6(1 2 3 4 )(1 )x x x x x x+ + + + − + − +      

(d)  2 3 2 3 4 2 2 3 4 3(1 ) ( ) ( )x x x x x x x x x x+ + + + + + + + + + + + + +                         
 
10. Determine the coefficient of 9x in each of the expansions of Exercise 9. 
 
11. Suppose that the generating function of a certain sequence 0{ }n na ∞

=  has a closed-form expression 
( ).F x    

(a)  What is the sequence that has 3 ( )x F x as its generating function?   
(b)  What is the sequence that has (1 ) ( )x F x−  as its generating function?   
(c)  What is the sequence that has ( ) /(1 )F x x−  as its generating function?   

 
12. Suppose that the generating function of a certain sequence 0{ }n na ∞

=  has a closed-form expression 
( ).F x    

(a)  What is the sequence that has 22 ( )x F x as its generating function?   
(b)  What is the sequence that has (1 ) ( )x F x+  as its generating function?   

(c)  What is the sequence that has 2( ) /(2 )F x x+  as its generating function?   
 
13. Evaluate each of the following generalized binomial coefficients: 

(a)  6
3
− 
 
 

                                                       (b)  3.5
5

 
 
 

  

 
14. Evaluate each of the following generalized binomial coefficients: 

(a)  1/ 2
4

− 
 
 

                                                       (b)  0.9
5

 
 
 

  

 
15. (a)  Determine the power series expansion for the following generating function: 1 / 1.x +                                

(b)   For each of the following closed-form generating functions, determine the first four terms 
of the corresponding power series expansion:  
 (i)  3.5(1 )x+                                       (ii)  / 1xe x+      

 
16. (a)  Determine the power series expansion for the following generating function: 1 .x+                                

(b)   For each of the following two closed-form generating functions, determine the first four 
terms of the corresponding power series expansion:  
 (i)  2.5(3 5 )x−                                       (ii)  2 1xe x+      

 
17. Use the generating function method to find explicit formulas for each of the following 

recursively defined sequences: 

(a)  { 0
1

3
2 5 ( 1)n n

a
a a n−

=
= + ≥  (b)  { 2

1

1
3 1 ( 3)n n

a
a a n−

=
= − ≥  (c)  { 0

1

1
2 3 ( 1)n n

a
a a n n−

=
= + ≥  

(d)  { 0 1
2

1, 1,
2 5 ( 2)n n

a a
a a n−

= =
= + ≥  (e)  { 0 1

2 1

1, 2,
2 ( 2)n n n

a a
a a a n− −

= =
= + ≥  

 

 
 
 
 



 
18. Use the generating function method to find explicit formulas for each of the following 

recursively defined sequences: 

(a)  { 0
1

1
4 1 ( 1)n n

a
a a n−

=
= − ≥  (b) { 10

1

4
2 2 ( 11)n n

a
a a n−

=
= + ≥  (c) { 0

1

3
3 2 ( 1)n n

a
a a n n−

=
= + ≥  

(d)  { 0 1
2

1, 1,
3 2 ( 2)n n

a a
a a n−

= =
= + ≥  (e)  { 0 1

2 1

1, 1,
2 3 2 ( 2)n n n

a a
a a a n− −

= =
= + − ≥  

 

 
19. Use the generating function method to find explicit formulas for each of the following 

recursively defined sequences: 

(a)  { 0
1 2 1 0

1
1 2 3 ( 1) ( 1)n n n

a
a a a na n a n− −

=
= + + + + + + ≥

                             

(b)  { 0
1 2 1 0

2
2 3 ( 1) ( 1)n n n

a
n a a a na n a n− −

=
= + + + + + + ≥

                             

 
20. Use the generating function method to find explicit formulas for each of the following 

recursively defined sequences: 

(a)  { 0
2 4

4
1 ( 1)n n n

a
a a a n− −

=
= + + + ≥

                            (b)  { 0
2 4

4
1 ( 1)n n n

a
n a a a n− −

=
+ = + + + ≥

                             

 
For each counting problem in Exercises 21–26 below, do the following:  (i) Write down a generating 
function for the problem, and indicate which coefficient will be the answer to the problem.  (ii)  
Determine this coefficient, and hence the answer to the problem.  
NOTE:  As demonstrated in the section proper, generating functions for counting problems need not be 
unique.   
 
21. (a) In how many ways can seven bills among $1, $5, or $10 bills be distributed to Jimmy?  

(b) How many combinations of rainy and sunny days can there be over 1 week (ignore the order 
of the days)?                               
(c) In how many combinations can 10 drinks be ordered from the choices of beers, glasses of 
wine, or martinis?                              

 
22. (a)  In how many ways can one choose six coins from a tin containing four pennies and six 

dimes?  
(b)  How many combinations of eight stamps can be formed using 1¢, 3¢, or 5¢ stamps?                               
(c)  How many ways can one place 10 toppings on a pizza from among the following topping 
choices:   pepperoni, artichoke, chicken, onions, cheese, and bell peppers (so multiple toppings 
must be selected, e.g., 4 artichoke, 4 chicken, and 2 bell pepper toppings; ignore the order of the 
toppings)?                           

 
23. (a)  In how many ways can seven bills among $1, $5, and $10 bills be distributed to Jimmy if he 

must get at least one $10 bill, and an odd number of $5 bills? 
(b) How many combinations of rainy and sunny days can there be over 1 week (ignore the order 
of the days) if there are an odd number of rainy days and at most 5 sunny days?                               
(c)  In how many combinations can 10 drinks be ordered from the choices of beers, glasses of 
wine, or martinis, if there must be at least 2 martinis and there cannot be only one glass of wine?                             

 
24. (a)  How many ways can one choose six coins from a tin containing four pennies and six dimes 

if an odd number of pennies were selected, and at least two dimes were selected?  
(b)  How many combinations of eight stamps can be formed using 1¢, 3¢, or 5¢ stamps, if at 
least two 5¢ stamps are used, and at most five 1¢ stamps are used?                               
(c)  How many ways can one place 10 toppings on a pizza among the following topping choices:   
pepperoni, artichoke, chicken, onions, cheese, and bell peppers (so multiple toppings must be 
selected, e.g., 4 artichoke, 4 chicken, and 2 bell pepper toppings) if at least one topping must be 
artichoke, and at most five toppings are cheese?                           
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25. In how many ways can 6 pieces of fruit be chosen from a basket that contains five (identical) 

apples, six oranges, two pineapples, and three bananas if at most one pineapple can be chosen, 
and if one banana is chosen then all must be chosen?                          

 
26. (a)  In how many ways can a $100 bill be exchanged into smaller bills using any of the following 

denominations:  $1,  $5,  $10,  $20,  $50?     
(b)  How would the answer in Part (a) change if we could also use $2 bills?      
(c)  In how many ways can a $1 bill be changed using coins of the following values: 50¢, 25¢, 
10¢, 5¢,  and/or 1¢?              

 
NOTE:  (Partitions of Integers)   A partition of a positive integer n is an (unordered) list of positive 
integers whose sum is n.  The number of partitions of n is called the partition function and is denoted 
as ( ).p n   For example, the partitions of 4 are easily seen to be:  

4, 3 + 1,  2 + 2, 2 + 1 + 1,  and 1 + 1 + 1 + 1 
so that (4) 5.p =    
 
The parts of a partition are simply the integers that appear in it.   
For each positive integer m, we define the related functions: 
 

  ( )mp n  =  the number of partitions of n each of whose parts is at most m,   

  ( )mq n  =  the number of partitions of n that consist of at most m parts. 

For example,  2 (4) 3p = since three of the above listed partitions of four have all parts being at most 

two; also 2 (4) 3q =  since exactly three of the above listed partitions of four have at most two Parts (4, 
3 + 1, and 2 + 2).   Since any part of a partition of n can be at most n and since there can be at most n 
parts, it follows that ( ) ( ) ( )m mp n p n q n= =  whenever .m n≥   Although it is not immediately obvious, 

it turns out that ( ) ( ),m mp n q n=  as will be shown in Exercise 32. 
 
Partitions are important in number theory and certain combinatorial problems.  Although there is no 
efficient algorithm for computing the partition function, generating functions can be used in the study 
of partitions.   This will be the subject of the Exercises 27–32.    
 
27. (a)  Show that a generating function for the sequence 1{ ( )}m np n ∞

= (the number of partitions of n 

whose parts are each at most m)  is given by 2 3
1( ) ,

(1 )(1 )(1 ) (1 )m mG x
x x x x

=
− − − −

  and thus, 

when m n≥ this also serves as a generating function of the partition function ( ).p n   Use this 
generating function to compute ( ),p n  for n = 4, 5, 6, and 8.   

(b)   Determine the value of m and the coefficient of ( )mG x that will give the answer to the 
following counting problem, and then obtain the answer:  In how many ways can a postage of 
15¢ be made using stamps of values  1¢, 2¢, 3¢, 4¢, and/or 5¢?          
NOTE:  According to the fact mentioned in the preceding note, the answer in Part (b) will also 
be the answer to the following problem:   In how many ways can a 15¢ postage be made using at 
most five stamps of values  1¢, 2¢, 3¢, 4¢, …,14¢, or 15¢?          
Suggestion:  For both Parts (a) and (b), use the expansions 2 31/(1 ) 1k k k kx x x x− = + + + +  
(which follow from (8), for any positive integer k).              

 

28. (a)  Show that the function 2 3
1( )

(1 )(1 )(1 )mG x
x x x

=
− − − 

  is a generating function of the 

partition function ( ).p n  

(b)    Let ( )Op n denote the number of partitions of n into odd integer Parts (i.e, as a sum of odd 

integers).   Since 1 + 1 + 1 + 1 and 3 + 1 are the only such partitions of 4, we have (4) 2.Op =    



 
Find a generating function for ( ),Op n  and then use it to compute ( )Op n  for n = 4, 5, 6, 7, and 
10.   
NOTE:  Although the generating function defined in Part (a) involves an infinite product, each 
resulting term in the expansion (with the exception of 1, which is the product of an infinite 
number of 1’s) involves only a finite product and there are only finitely many terms associated 
with each power of x.    

 
29. (a)  Let ( )Dp n denote the number of partitions of n into distinct Parts (i.e, no two parts of the 

partition are the same number).   Since 4 and 3 + 1 are the only such partitions of 4, we have 
(4) 2.Dp =    Find a generating function for ( ).Dp n   

(b)   Use your generating function of Part (a) to compute ( )Dp n for n = 4, 5, 6, 7, and 10.   
 
30. (Euler’s Theorem)  Show that the function ( )Op n of Exercise 28 is the same as the function 

( )Dp n of Exercise 29 by showing they have the same generating function.   
 
31. Use generating functions to show that every positive integer can be uniquely expressed as a sum 

of distinct powers of 2. 
 
32. (Star Diagram and a Proof that ( ) ( ))m mp n q n=   Fill in the details of the following outline of a 

proof of the fact, mentioned above, that the number of partitions of a positive integer n into at 
most m parts is the same as the number of partitions of n into parts of size at most m, i.e., that  

( ) ( ):m mp n q n=    Any partition of n can be represented by its star diagram that consists of n 
stars (or asterisks) grouped in rows corresponding to the parts of the partitions.    For example, 
the partition 5 + 4 + 2 of 11 has the following star diagram: 
 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗

 

Each star diagram has a conjugate star diagram obtained viewing the columns as the parts rather 
than the rows (i.e., transposing rows and columns), and this gives rise to a conjugate partition.   
The conjugate partition of the preceding is 11 = 3 + 3 + 2 + 2 + 1, which has the following star 
diagram:  

∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗

 

Show that the conjugate operation bijectively maps all partitions of n into m parts into all 
partitions of n into parts of size at most m, thus proving that ( ) ( ).m mp n q n=  

 
NOTE:  (Sicherman Dice)  The next two exercises introduce an interesting problem relating to dice, 
along with a solution to this problem using generating functions.  The problem asks whether it is 
possible to repaint the six faces of a pair of dice with positive integers (with duplications being allowed 
on the same die) in such a way that is different from the standard die (i.e., the six faces contain the 
numbers 1 through 6) and that when these modified dice are rolled together, the number of ways that 
the sum of the two numbers appearing as a given value (between 2 and 12) will be the same as for a 
pair of standard dice.  Such a pair of dice were discovered by Colonel George Sicherman (a computer 
programmer) and first appeared in the literature in a 1978 Scientific American article by Martin 
Gardner.  The next two exercises will use generating functions to find Sicherman’s dice, and show that 
they are unique.   
 
33. (Rolling Generalized Dice)   

(a)   Explain why the function 2 3 4 5 6 2 3 4 5 6( ) ( )( )D x x x x x x x x x x x x x= + + + + + + + + + +  
serves as a generating function for the problem of counting the number ways that a particular 
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outcome occurs when two dice are tossed and the outcome is viewed as the sum of the two 
numbers on the top faces (i.e., an integer between 2 and 12 inclusive).    Compute the coefficient 
of 4x  of this generating function, and show that it is the same as the number of ways that a 4 
(total) can be obtained by rolling two dice. 
(b)     Next, suppose that the six faces of a pair of dice are repainted with numbers that are (not 
necessarily distinct) positive integers:  
Die 1:  1 2 3 4 5 6a a a a a a≤ ≤ ≤ ≤ ≤                                  Die 2:  1 2 3 4 5 6b b b b b b≤ ≤ ≤ ≤ ≤        
Show that a generating function for the problem of counting the number of ways that these two 
dice can be tossed and the sum of the numbers appearing on the top faces adding up to a certain 
number (i.e., an integer between 1 1a b+  and 6 6a b+  inclusive) is given by:      

3 5 6 3 5 61 2 4 1 2 4( )( )a a a b b ba a a b b bx x x x x x x x x x x x+ + + + + + + + + +  
Check this result by expanding the function in the very simple case in which all numbers on Die 
1 are 1s and all numbers on Die 2 are 2s.   

 
34. (Sicherman Dice)  (a) Use the generating functions established in the preceding exercise to show 

that there is only one pair of Sicherman dice, namely those dice with the following face values:  
1, 2, 2, 3, 3, 4, and 1, 3, 4, 5, 6, 8.    
(b)  Verify that the 36 possible outcomes obtained by adding the numbers shown of the 
Sicherman dice given in Part (a) really do amount to the same number of outcomes for the 
numbers 2–12 as in the case for ordinary dice. 
Suggestion:  Use the fact that the generating function for a standard pair of dice (as given in Part 
(a) of the preceding exercise) factors as follows:   

2 3 4 5 6 2 2 2 2 2 2 2( ) (1 ) (1 ) (1 ) .x x x x x x x x x x x x+ + + + + = + + + − +  
We will also need the fact that polynomials with integer coefficients obey a unique factorization 
property similar to that of the integers.9   By equating this generating function to the generating 
function for a pair of Sicherman dice (from Part (b) of the previous exercise): 

3 5 6 3 5 61 2 4 1 2 4

2 2 2 2 2 2
( )( )

(1 ) (1 ) (1 ) ,

a a a b b ba a a b b bx x x x x x x x x x x x
x x x x x x

+ + + + + + + + + +
= + + + − +

 

it follows (from unique factorization) that the individual generating functions for each of the two 
dice must satisfy:   

3 5 6 31 2 4 1 2 42 2(1 ) (1 ) (1 ) ,a a aa a ax x x x x x x x x x x xαα α α+ + + + + = + + + − +   
and 

3 5 6 31 2 4 1 2 42 2(1 ) (1 ) (1 ) ,b b bb b bx x x x x x x x x x x xββ β β+ + + + + = + + + − +  

where ,i iα β are nonnegative integers that satisfy 2,i iα β+ =  for i = 1, 2, 3, 4.   Substitute x = 0 

into both of the above equations to conclude that 1 11 .α β= =   Substitute x = 1 into both of the 

above equations to conclude that 2 3 2 31 .α α β β= = = =   Finally, consider the generating 

function for the pair and show there are now three feasible solutions:  (i) 4 41 ,α β= =  (ii) 

4 40, 2,α β= = or (iii) 4 42, 0.α β= =   
 
35. (a)  Establish the expansion 

2 9 2 9 5 9 10 5 6( )(1 ) (1 )(1 ) (1 )x x x x x x x x x x −+ + + + + + + = − − −   
and then show this function is a generating function for the problem of counting the number of 

 
9 The interested reader can find details on this topic in any good book on abstract algebra, such as  
[Hun-96].   The analog of the prime numbers in this polynomial factorization theory are so-called 
(integer coefficient) irreducible polynomials:  they cannot be further factored into integer coefficient 
polynomials of smaller degree.   Another relevant topic in abstract algebra is the existence of 
algorithms for performing such integer factorizations of polynomials.   Such algorithms are built in to 
most symbolic/computer algebra systems.   



 
positive six digit integers the sum of whose digits is n.   
(b)  How many positive six digit numbers have a digit sum of 22? 
(c)  Find a generating function for the problem of counting the number of k-digit positive 
integers whose digits sum to n.   

 
36. (a)  Find a generating function for the problem of counting the number ofpositive integers 

between 1 and 10 1k − (inclusive) whose digits sum to n.   
(b)  How many positive integers in the range 1 to 999,999 have a digit sum of 22? 
Suggestion:  See Exercise 35(a).   

 
 
 

APPENDIX TO SECTION 5.3:  APPLICATION TO WEIGHTED 
DEMOCRACIES 
 
We close this section with an application to weighted voting systems.  It will provide an excellent 
illustration of how generating functions can sometimes be used to produce algorithms that are 
significantly more efficient than other methods for solving combinatorial problems.   The 
implementation of generating functions for the problem that we discuss is more sophisticated and less 
transparent than for the other counting problems we have discussed so far; the development is due to J. 
M. Bilbao, et. al [BFLL-00].  A different and more general method was subsequently discovered by V. 
Yakuba [Yak-08].    
 
In many democratic voting systems, it is often equitable for different voters to have different powers of 
vote.  For example, at a stockholder meeting, people who own greater numbers of shares are allowed 
proportionately stronger votes.  Similarly, in the European Union, larger nations (like France or the 
UK) have five times as much voting power as some of the smaller nations (like Luxembourg).   Let us 
first define the voting systems that we will be considering: 
 
DEFINITION 5.7:  A weighted voting system consists of the following:  
A set of N voters:  1 2, , , ,NV V V  a corresponding set of N weights: 1 2, , , ,Nw w w which are assumed 
to be positive integers giving the number of votes controlled by the corresponding voters, and a quota 
q, which is a positive integer satisfying 1 1(1/ 2)N N

i in nw q w= =≥ >∑ ∑  equaling the minimum number of 

votes needed to pass a motion that is being voted on.   A weighted voting system with these parameters 
will be denoted by 1 2[ : , , , ].Nq w w w  
 
EXAMPLE 5.28:   Here are a few simple examples of weighted voting systems: 
(a)  [7:  5, 2, 1].   In this system, a motion wins if, and only if 1V and 2V  vote for it.  3V ’s vote is thus 
irrelevant; such a voter is called a dummy voter.   
(b)  [9:  5, 5, 4, 2, 1].   In this system, in order for a motion to pass, either 1V or 2V  must vote for it.   

(c)  [10:  8, 3, 2, 2, 1].   In this system, voter 1V has veto power since in order for any motion to pass it 

must have 1V ’s vote. 
 
The above example makes it clear that some serious inequities might arise in weighted voting systems.  
The examples were small enough so that this was evident, but when the number of voters exceeds even 
a moderate size such as 30, the analysis of weighted voting systems can become extremely complex.   
Different notions of assigning a certain percentage of the “power” to the voters have been developed. 
One of the more widely accepted methods was developed by John Banzhaf III,10 and is described in the 
following definition. 

 
10 John Banzhaf III (1940–) is a law professor at George Washington University.  The “Banzhaf index” 
was actually invented by Lionel Penrose in a 1946 statistics paper, but went largely unnoticed by the 
scientific community.  Banzhaf rediscovered and popularized the index in a seminal 1965 paper  
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DEFINITION 5.8:  (Banzhaf Power Index)  Suppose that we are given a weighted voting system 

1 2[ : , , , ].Nq w w w   A coalition is a nonempty set S of voters (who may vote together) and its weight 
wgt( )S  is simply the sum of the weights of its individual voters.  A coalition is a winning coalition if 

its weights add up to at least q, otherwise it is a losing coalition.   A voter in a winning coalition is 
critical (for that coalition) if without him/her the coalition would become a losing one.   For each voter 

,nV  we define ( )nc V  to be the total number of winning coalitions in which nV  is critical, and we let 

1 ( ).N
nnT c V== ∑   The Banzhaf index of a voter nV is defined to be ( ) / .nc V T  

 
EXAMPLE 5.29:   Compute the Banzhaf indices of each voter in the weighted voting system [7:  5, 2, 
1] of Example 5.28(a).   
 
SOLUTION:   We analyze all coalitions for the given weighted voting system: 
 

Coalition Weight Winning? Critical Voters 

1{ }V  5 No N/A 

2{ }V  2 No N/A 

3{ }V  1 No N/A 

1 2{ , }V V  7 Yes 1 2,V V  

1 3{ , }V V  6 No N/A 

2 3{ , }V V  3 No N/A 

1 2 3{ , , }V V V  8 Yes 1 2,V V  
 
Thus we have 1 2 3( ) ( ) 1, ( ) 0, 2,c V c V c V T= = = =  so the Banzhaf indices of 1 2,V V  are both 1/2, and that 

of 3V  is zero.   This can be interpreted by saying that for all practical purposes, 1 2,V V  share an equal 

amount of power in this weighted voting system, despite the fact that 1V  controls 150% more votes 

than 2.V  
 
EXERCISE FOR THE READER 5.25:   Compute the Banzhaf indices of each voter in the weighted 
voting system [9:  5, 5, 4, 2, 1]  of Example 5.28(b).   
 
The following exercise for the reader asks to compute the Banzhaf indices for the historically 
significant setting of the 1964 Nassau County voting system that motivated Banzhaf to develop his 
theory.    
 
EXERCISE FOR THE READER 5.26:   (a) Compute the Banzhaf indices of each voter in the Nassau 
County NY Board of Supervisors weighted voting system [59:  31, 31, 28, 21, 2, 2],  then (b) identify 
any voters who are dictators (any voter whose weight is greater to or equal to the quota), dummies, or 
have veto power.    
 
The brute-force approach used in Example 5.29 quickly becomes impractical since it generally requires 
checking through 2 1N −  coalitions.    For example, to compute the Banzhaf indices for the 50 states 
and the District of Columbia with respect to the electoral votes accorded to each state (which are 
computed using the latest census figures),   this approach would require looking at over 2  quadrillion  
 

 
entitled “Why weighted voting doesn’t work,” in which he demonstrated that a certain voting system in 
Nassau County, NY gave “power” to only three out of the six voting districts.   



 
coalitions, which, at the time of the writing of this book, would be intractable to perform in a 
reasonable amount of time even on a supercomputer.11 
 
Generating functions can be used to render a much more efficient algorithm for computing Banzhaf 
indices.   The method is a bit more involved than the previous generating function counting schemes 
that we have introduced; the details of its development will be the subject of the following example: 
 
EXAMPLE 5.30:   Develop a method involving generating functions to compute the Banzhaf indices 
of each voter in a weighted voting system 1 2[ : , , , ].Nq w w w   
 
SOLUTION:  In case any of the weights nw  is at least equal to the quota q, then the corresponding 
voter is a dictator since his/her vote alone decides the overall decision.  Since such weighed voting 
systems are not very interesting, we henceforth make the following:   
 
Assumption:  for each  (1 ).nw q n n N< ≤ ≤  
 
We begin with the following generating function:   
 

 1 2( ) (1 )(1 ) (1 ).Nww wF x x x x= + + +  (13) 
 
We observe from (13) that since the term of highest degree in the expanded form of ( )F x is 

1 2 ,Nw w wx + + +  it follows that the degree of ( )F x is 1 .N
inW w=∑   (The total weight of all votes.)   We 

introduce notation for the coefficients of the expanded form of the generating function by means of the 
following equation: 
 

 1 2
1 2 1 0( ) .W W

W WF x a x a x a x a x a−
−= + + + + +  (14) 

 
We have already observed that 1;Wa =  similarly (13) shows that 0 1.a =   The following observation is 
seen by comparing (13) and (14) and interprets the coefficients of the generating function in terms of 
the voting system: 
 
Key Observation:  ia  = the number of coalitions of weight  i. 
 
We first will develop a recursive formula for these important generating function coefficients.  The idea 
will be to build up the generating function ( )F x through a sequence of N factor multiplications.  More 
precisely, we define the following sequence of generating functions: 
 

1

1 2

31 2

1 2

0

1

2

3

( ) 1
( ) (1 )
( ) (1 )(1 )
( ) (1 )(1 )(1 )

( ) (1 )(1 ) (1 ) ( ).N

w

w w

ww w

ww w
N

F x
F x x
F x x x
F x x x x

F x x x x F x

=

= +

= + +

= + + +

= + + + =





 

 
 
 

 
11 On his Web site, Banzhaf has a link to some data sets including computations of the 51 Banzhaf 
indices for this electoral college system.   In contrast to the efficient exact method that we will 
introduce, Banzhaf employed an approximation method that used simulations to randomly generate 
4.29 billion coalitions, and it took nearly 25 hours on his computer.   Simulations will be explained in 
Section 6.2.   
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We note that 
 

  1( ) ( )(1 ),jw
j jF x F x x−= +  for 1 .j N≤ ≤    (15) 

 
For each index j, 0 ,j N≤ ≤  we define integers ( ) , (0 )j

ia i W≤ ≤  to be the coefficients of the 

expansion of ( ),jF x  and thus we may write: 

 
 ( ) ( ) 1 ( ) 2 ( ) ( )

1 2 1 0( ) .j W j W j j j
j W WF x a x a x a x a x a−

−= + + + + +  (16) 

 
If we define ( ) 0j

ia =  if i is a negative integer, it follows by comparing coefficients of ix  in both sides 
of (15) that the following recursion formula is valid: 
 
 

 ( ) ( 1) ( 1) (0 , 1 ).
j

j j j
i i i wa a a i W j N− −

−= + ≤ ≤ ≤ ≤  (17) 

 
We have thus developed an effective recursion scheme for computing the coefficients ( )j

ia  (and hence 

also the coefficients ( ) ),N
i ia a=  but how is this going to help us to compute the desired Banzhaf 

indices?   We next show how these coefficients can help us to compute another set of coefficients from 
which we will be able to directly obtain the Banzhaf indices; this latter process will be the novelty of 
the method.    To this end, we temporarily focus attention on a certain voter ( )1 .nV n N≤ ≤   It will be 

convenient to introduce the following notation: 
 
NOTATION:  We let nσ  be the number of swings for voter ;nV   in other words, this is the number of 

losing coalitions S such that ,nV S∉  that would become winning coalitions if nV  were to join.    
 
Since wgt( ) ,n nV w=  it follows that12  
 

 1 2|{ { , , , }: and wgt( ) } | .n N n nS V V V V S q w S qσ = ⊆ ∉ − ≤ <  (18) 
 
Notice that ( ).n nc Vσ =   Each of these coefficients is the sum of the following coefficients: 
 

 1 2|{ { , , , }: wgt( ) } |,i N nb S V V V V S S i= ⊆ ∉ =  (19) 
 
that is 
 

 
1

.
n

q

n i
i q w

bσ
−

= −
= ∑  

 
(20) 

 
 
 
 
 

 
12 Although, by definition,  coalitions are required to be nonempty, the condition S ≠ ∅  would be a 
redundancy in (18) since it is already required that wgt( )nq w S− <  and we are assuming throughout 

the development that nw q<  (thus the latter condition implies that wgt( ) 0,S > so S cannot be empty).   



 
From the nσ ’s the Banzhaf indices are easily computed: 
 

 
1 2

Banzhaf index of voter .n
n

N
V σ

σ σ σ
=

+ + +

 
 

(21) 

 
We could compute the ib ’s in the same fashion that was shown for the ia ’s (using a corresponding 
generating function with one less weight), but there is a more efficient scheme.   If we define 

n nW W w= −  (i.e., the total voting weight less the weight of voter ),nV  then reordering and taking nV  
last, it follows that we may write: 
      

 
1 2

1 2 1 0
1 2

1 2 1 0

( )
( )(1 )n n n

n n

W W
W W

W W w
W W

F x a x a x a x a x a
b x b x b x b x b x

−
−

−
−

= + + + + +

= + + + + + +





 
 

(22) 

 
(This really just follows from the recursion formula (15), if we reorder the voters so that nV  is taken 

last.)   If, as was already done for the ia ’s, we define 0ib = whenever i is a negative integer, then by 

comparing coefficients of ix  in both sides of (22) we obtain the following recursion formula: 
 
 

 ( 0,1,2,...).
ni i i wb a b i−= − =  (23) 

 
By appropriately combining the preceding recursion formulas, we arrive at the following algorithm for 
the computation of Banzhaf indices. 
 
ALGORITHM 5.1:  (Generating Function Based Recursion Algorithm for  
Computing Banzhaf Indices in a Weighted Voting System) 
Input:  A weighted voting system 1 2[ : , , , ],Nq w w w  where the weight nw  of  voter nV is less than the 
quota q (so there are no dictators). 
Output:  The corresponding Banzhaf indices of the N voters. 
 
Step 1:  (Initialize known coefficients) 
Set 0 1.Wa a= =   Set (0)

0 1a =  and (0) 0,ia =  for each 0.i ≠   

Set ( ) 0,j
i ia b= =  whenever index i is negative. 

 
Step 2:  (Compute the ( )j

ia ’s) 
FOR index j = 1 TO N 

FOR index 0i =  TO 1i W= −  
Set ( ) ( 1) ( 1)

j

j j j
i i i wa a a− −

−= +  (using (17)) 

END i FOR 
END j FOR 
 
Step 3:  (Record the ia ’s) 

FOR index 1i =  TO 1i W= −  
Set ( )N

i ia a=  
END i FOR 
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Step 4:  (Compute the nσ ’s) 
FOR index n = 1 TO N 

(First find the needed ib ’s corresponding to voter nV ) 
FOR index i = 0 TO 1q −  

Set 
ni i i wb a b −= −  

 END i FOR 
 (Record )nσ  

 1
n

q
n ii q w bσ −

= −= ∑  

END n FOR 
 
Step 5:  (Compute the Banzhaf indices) 
Set 1

N
nnT σ== ∑  

FOR index n = 1 TO N 
 Banzhaf index of nV = /n Tσ  
END n FOR 
Of course, for small sized voting systems, the overhead of this algorithm would make it more 
cumbersome than the brute-force method.  But notice that the computational steps 2, 4, and 5 
respectively take at most NW, Nq, and 2 1N −  mathematical operations (additions, subtractions, 
divisions), which total less than 3NW operations.  Recall that N is the number of voters, and W is the 
total weight of the votes.   Compare this with the amount of work needed in the brute-force approach 
that was used in Example 5.29.  In general, all but the nonempty set of voters needs to be considered, 
and there are 2 1N −  of these.   Also, for each coalition, a nontrivial amount of work needs to get done 
(check its weight and determine whether it is winning, and if it is, determine the critical voters).  So this 
method requires more than 2N  mathematical operations.    In the electoral college example that 
Banzhaf considers on his Web site,  N = 51 (50 states and the District of Columbia), and W = 538 (total 
number of electoral votes).    Thus, the brute-force approach would require (much) more than 

51 152 2.25... 10= ×  mathematical operations, whereas Algorithm 5.1 would require at most   
3 51 538 82,314⋅ ⋅ =  mathematical operations.  Thus, although as Banzhaf had found, the brute-force 
approach is impossible to do in a reasonable amount of time (even with a computer), Algorithm 5.1 
would be well suited for this example.  The computer implementation material at the end of this chapter 
will consider some specific applications of Algorithm 5.1.   
 
The following exercise for the reader asks to compute the Banzhaf indices both directly (by considering 
all coalitions) and by using the generating function method for the historically significant setting of the 
1964 Nassau County voting system that motivated Banzhaf to develop his theory.   The size of the 
example is small enough to do by hand, and for the speed of the generating function method to not yet 
be realized.   Some larger examples that are feasible only with the latter method will be  considered in 
the computer exercises and implementation material that follows this appendix. 
 
EXERCISE FOR THE READER 5.27:   Use Algorithm 5.1 to recompute the Banzhaf indices of each 
voter in the weighted voting system [7:  5, 2, 1] of Example 5.28(a).   
 
In analyzing voting systems, particularly with generating function methods, it often occurs that the 
weights of the votes in the system can be reduced while preserving the essential features of the system.  
As a very simple example, everyone should immediately agree that the voting system [4:  2, 2, 2, 2] is 
equivalent to [2: 1, 1, 1, 1], in that all possible voting scenarios in either system would have the same 
result in either system.    The following definition generalizes this concept. 
 
DEFINITION 5.9:  (Equivalent Voting Systems)  Two weighted voting systems 1 2[ : , , , ]Nq w w w  

and  1 2[ : , , , ]Nq w w w ′′ ′ ′′
  are said to be equivalent if the number of voters is the same, and any  

coalition of voters in the first is winning if, and only if it is winning in the second.   



 
 
Since the running time of Algorithm 5.1 depends on the total weight W of all votes, when applying this 
algorithm, it is desirable to find a voting system equivalent to the one being analyzed and with as small 
a total weight as possible.    
 
EXERCISE FOR THE READER 5.28:   In 1994, the Nassau County NY Board of Supervisors 
modified their weighted voting system to the following: [65:  30, 28, 22, 17, 7, 6].   
(a)  Show that [15:7, 6, 5, 4, 2, 1] is an equivalent voting system. 
(b)  Apply the generating function method to compute the Banzhaf power indices using the original 
system, and then the equivalent system of Part (a).   
(c)   Show that there does not exist an equivalent voting system of smaller weight than that given in 
Part (a).  Thus, the system given in Part (a) is called a minimum equivalent voting system to the given 
system.    
 
Although it is desirable to have equivalent voting systems of reduced total weight, there does not seem 
to exist an efficient algorithm for their determination.   
 
ADDITIONAL EXERCISES FOR THE APPENDIX TO SECTION 5.3:   
 
1. For each voting system given, do the following. Compute all Banzhaf power indices by:  (i) 

Analyzing each coalition for its critical voters, as in the solution of Example 5.29.  (ii)  Using 
generating functions.  (iii)  Then identify any voters who are dictators, dummies, or have veto 
power.       
(a)  [4:  2, 1, 1, 1, 1]                                                (b)   [12:  8, 5, 5, 3, 2]                                                 

 
2. For each voting system given, do the following. Compute all Banzhaf power indices by:  (i) 

Analyzing each coalition for its critical voters, as in the solution of Example 5.29.  (ii)  Using 
generating functions.   (iii)  Then identify any voters who are dictators, dummies, or have veto 
power.      
(a)  [6:  4, 2, 2, 1, 1]                                                (b)   [22:  14, 12, 10, 8, 5]                                                 

 
3. For each statement below regarding voting systems, either explain why it is (always) true, or 

provide an example of a weighted voting system in which it is false. 
(a)  If the Banzhaf power index of a voter is greater than 1/2, then the voter must be a dictator.   
(b)  If there are N voters, then any voter with veto power must have Banzhaf power index at least 
1/N.                                                 

 
 
 
  

 

COMPUTER IMPLEMENTATIONS AND 
EXERCISES FOR SECTION 5.3 
 
(Polynomial Arithmetic on Computers)  Readers who are using computing platforms with so-called 
symbolic or computer algebra capabilities (such as MAPLE, Mathematica®, and MATLAB®) will be 
able to perform the polynomial multiplications and additions/subtractions needed to compute 
coefficients of generating functions.  But it is not hard to use any computing system to perform this sort 
of arithmetic.  We will show how to represent polynomials as vectors and some corresponding efficient 
schemes for performing arithmetic on them.   In all of our applications, the polynomials will have 
integer coefficients, so this may be assumed in what follows.    
 
It is often convenient to store a polynomial 1

1 1 0
n n

n nf a x a x a x a−
−= + + +  as the vector of its 

coefficients:  1 1 0
0

[ , , , , ].
n

i
i n n

i
f a x a a a a−

=
= ∑      This basic idea is so important that we repeat it with 

emphasis: 
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Polynomial  Vector of Coefficients  
1

1 1 0
n n

n na x a x a x a−
−+ + +  1 1 0[ , , , , ]n na a a a−   

 
 
The addition and multiplication operations can be converted into corresponding operations on such 

vectors.  Suppose that 1 1 0
0

[ , , , , ]
m

i
i m m

i
g b x b b b b−

=
= ∑    is another polynomial.   From the definition of 

addition of polynomials, we may write: 
 

1 1 0[ , , , , ],N Nf g c c c c−+    where max( , ) and ,i i iN n m c a b= = +  (24) 

 
for 1 .i N≤ ≤   (We adhere to the convention made in the section that unspecified coefficients are zero.)   
 
To understand the vector version of polynomial multiplication, we first see how it will work if we 
multiply 0f ≠  by a monomial, which is a nonzero polynomial consisting of a single term: k

kb x  
 

1 1 1
1 1 0 1 1 0( ) [ ]k n n k n k n k k k

k n n k n nf b x a x a x a x a x b a x a x a x a x− + + − +
− −⋅ = + + + ⋅ = + + +   

 
In vector notation, this multiplication becomes: 
 

1 1 0 1 1 0
 zeros  zeros

[ , , , , ] [ ,0,0, ,0] [ , , , , ,0,0, ,0].n n k k n n
k k

a a a a b b a a a a− −⋅ =   

 

 (25) 

 
 
By (repeatedly) using the distributive law, a general polynomial multiplication can be broken down into 
a sum of multiplications of a polynomial by a monomial: 
 

1 1 0
0 0 0  zeros

~ [ , , , , ,0,0, ,0].
m m m

i i
i i i n n

i i i i

f g f b x f b x f g b a a a a−
= = =

⋅ = ⋅ = ⋅ ⇒ ⋅∑ ∑ ∑  



 (26) 

 
Thus, with this method of storing polynomials along with the associated algorithms (24) and (26) for 
their addition and multiplication, we have an efficient means for manipulating polynomials on 
computing platforms.  This will serve as a basis for the computer implementation such polynomial 
arithmetic and thus in their use in computing coefficients of generating functions.   
 
 
1. (Program for Polynomial Addition) (a) Write a program with syntax: 

 

Sum = PolyAdd(px,qx) 
 

that will add two polynomials.  The two inputs, px and qx are vectors representing the 
polynomials to be added.  The output, Sum, is a vector representing the sum of the inputted 
polynomials.  If the sum is the zero polynomial, the output should be [0]; otherwise, the output 
should have a nonzero first component (so that the degree of the sum is one less than the length 
of the output vector). 
(b)  Run your program on the following polynomial additions: 
(i)  5 8 6 2( 1) ( 4 2)x x x x x+ + + + + +  

(ii)  3 2 8 7 6 5 4 3 2( 2 1) ( 1)x x x x x x x x x x+ + + − + − + − + − +  
 
2. (Program for Polynomial Multiplication) (a) Write a program with syntax: 

 

Prod =PolyMult(px,qx) 
 

that will multiply two polynomials.  The two inputs, px and qx are vectors representing the 
polynomials to be multiplied.  The output, Prod, is a vector representing the product of the 



 
inputted polynomials.  If the product is the zero polynomial, the output should be [0]; otherwise, 
the output should have a nonzero first component (so that the degree of the sum is one less than 
the length of the output vector). 
(b)  Run your program on the following polynomial multiplications: 
(i)  5 8 6 2( 1) ( 4 2)x x x x x+ + ⋅ + + +  

(ii)  3 2 8 7 6 5 4 3 2( 2 1) ( 1)x x x x x x x x x x+ + ⋅ − + − + − + − +  
 
3. Making use of the programs of either of the preceding two computer exercises, compute the 

coefficient of 10x in each of the following generating functions: 
(i) 8 7 6 5 4 3 2 4( 1)x x x x x x x x− + − + − + − +   

(ii)  2 31 / [(1 )(1 )(1 )]x x x− − −  
 
4. (a)  Determine the number of ways that $1000 could be distributed using bills of any or all of the 

following denominations:  $1, $5, $10, $20, $50, $100.  
(b)   Suppose that we roll 10 regular dice, and we add up all of the numbers that show (so the 
number will lie between 6 and 60, inclusive).   How many different ways could a total of 15 show 
up?   How about a total of 30? 

 
5. (Program for Partition Function Based on Generating Functions)  (a) Write a program with 

syntax: 
 
 

pn = Partition(n) 
 

that will input, n, a positive integer, and will  output, pn, the number of partitions of n, i.e., 
( ).p n   Use the generating function of Part (a) of Ordinary Exercise 27 with m = n, the expansion 

(8) (multiple times with powers of x replacing x), and repeatedly use the program of Computer 
Exercise 2.     
(b)  Use your function from Part (a) to compute the terms of the sequence 

(5), (10), (15), (20),p p p p  until it takes a term more than 1 minute to execute. 
(c)  Create a more efficient program than that of Part (a): 
 

pn = PartitionVer2(n) 
 

 by modifying the program of Computer Exercise 2 so that coefficients of powers higher than nx
are ignored.    
(d)  Repeat Part (b) using instead the program of Part (c). 

 
6. (Program for Partition Function Not Based on Generating Functions)  (a) Write a program with 

syntax: 
 
 

pn = PartitionBrute(n) 
 

having the same input/output as that of Part (a) of the preceding computer exercise, but in this 
exercise do not base the program on the generating function approach.   Use either a brute-force 
approach, or whatever other method you can think of. 
(b)  Use your function of Part (a) to compute the terms of the sequence 

(5), (10), (15), (20),p p p p  until a term takes more than 1 minute to execute.   Compare with the 
performance of the generating function based program. 

 
7. (Program for Odd Partition Function Based on Generating Functions)  (a) Write a program with 

syntax: 
 
 

pOddn = OddPartition(n) 
 

that will input, n, a positive integer, and will  output, pOddn, the number of odd partitions of n, 
i.e., the function ( )Op n introduced in ordinary Exercise 28(b).   Use the generating function that 
was found in Exercise 28(b).  
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(b)  Use your function of Part (a) to compute the terms of the sequence 
(5), (10), (15), (20),O O O Op p p p  until a term takes more than 1 minute to execute. 

(c)  Create a more efficient program than that of Part (a): 
 

pOddn = OddPartitionVer2(n) 
 

 by modifying the program of Computer Exercise 2 so that coefficients of powers higher than nx
are ignored.    
(d)  Repeat Part (b) using instead the program of Part (c). 

 
NOTE:  The remaining computer exercises deal with the material from the appendix to Section 5.3. 
 
8. (Program for Computation of Banzhaf Power Indices:  Brute-force Version)  (a) Write a program 

with syntax: 
 
 

BIndVec = BanzhafBrute(q,WVec) 
 

whose two input variables correspond to the parameters of a weighted voting system: q, a 
positive integer representing the quota, and WVec, a vector of positive integers representing the 
voter weights. The output, BIndVec, will be the corresponding vector of Banzhaf power indices.    
The program should follow the brute-force method that was used in Example 5.29, i.e., by 
considering all coalitions, identifying critical voters for each, and keeping separate tallies for each 
voter.   
(b)  Use your function from Part (a) to compute the Banzhaf power indices for the weighted 
voting system of Example 5.29 and for the Nassau County Board of Supervisors system of 
Exercise for the Reader 5.26.   
(c)  For each positive even integer n, we define a weighted voting system nV  defined by: 

[ ( 1) / 2; , 2, 4, ,2]n n n n n n= − − − V  

Repeatedly apply your program of Part (a) to the systems nV  with n = 10, 12, 14, … until the 
program takes longer than one minute to execute.   

 
9. (Program for Computation of Banzhaf Power Indices:  Generating Function Version)  (a) Write 

a program with syntax: 
 
 

BIndVec = BanzhafGF(q,WVec) 
 

whose input/output variables are the same as in the preceding computer exercise, but that 
implements Algorithm 5.1.   
(b)  Use your function from Part (a) to compute the Banzhaf power indices for the weighted 
voting system of Example 5.29 and for the Nassau County Board of Supervisors system of 
Exercise for the Reader 5.26.   
(c)  For each positive even integer n, we define a weighted voting system nV  defined by: 

[ ( 1) / 2; , 2, 4, ,2]n n n n n n= − − − V  

Repeatedly apply your program of Part (a) to the systems nV  with n = 10, 12, 14, … until the 
program takes longer than one minute to execute.   Compare with the results of Part (c) of the 
preceding computer exercise.  

 
10. (Computation of Banzhaf Power Indices in Some Well-Known Voting Systems)  In this exercise, 

you are to apply your program from Computer Exercise 9 to compute the Banzhaf power indices 
of the well known weighted voting systems that are described below.  You will need to obtain or 
download the relevant data from the internet.     
(a) The European Community weighted voting system that was established by the Treaty of Nice 
that went into effect in 2004.  
(b)  The 51 voters (50 states and the District of Columbia) of the United States Electoral College.    
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CHAPTER 5:  COUNTING TECHNIQUES, COMBINATORICS, AND 
GENERATING FUNCTIONS

EFR 5.1: Part (a):  12 11 10 9  8 95,040 Part (b):  With neither K nor S, there are (as in Part 
(a) but with the remaining 10 players to choose from)  10 9 8 7 6 30, 240 possible lineups.  Now 
for the (disjoint) case in which exactly one of K or S appears, we use the multiplication principle 
as follows:

choices for   choices for       ways to fill the 
K or S where to put    remaining four slots

   K or S with remaining 10 players

2 5 10 9 8 7 50,400.

This gives a total of 80,640 lineups.

EFR 5.2: Invoking the notation of the solution of Example 5.6, we are looking for
2 3 5 11| | .D D D D Using the inclusion-exclusion principle along with the facts pointed out in the 

solution of Example 5.6 that lcm( , )n m n mD D D (and its easy extension to larger intersections by 

induction), and | | 3600 / ,nD n we obtain:

2 3 5 11 2 3 5 11 6 10 22 15 33 55

30 66 110 165 330

| | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | |

3600 / 2 3600 / 3 3600 / 5 3600 /11 3600 / 6 3600 /10

3600 / 22 3600 /15

D D D D D D D D D D D D D D

D D D D D

3600 / 33 3600 / 55 3600 / 30

3600 / 66 3600 /110 3600 /165 3600 / 330

1800 1200 720 327 [600 360 163 240 109 65]
[120 54 32 21] 10

2727.

EFR 5.3: Each of the three strings of letters can be made into 310 1000 license plates, and these
are all different.  Thus by the complement principle, we need only subtract the total number (3000) of 
these plates from the total number of Hawaii plates that was found in Example 5.2 (17,576,000) to get 
the answer to this question:  17,573,000.

EFR 5.4: Part (a):  We subdivide the equilateral triangle into four smaller
ones with side length 1/2 (see figure).  Since there are five points in the larger 
triangle, at least two must lie in a single smaller triangle.  Since the diameter 
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of any triangle is its longest side length, it follows that two such points will lie at a distance of at most 
1/2 from each other.
Part (b):  The only way for two points on a triangle to have distance between them equaling the length 
of the (longest) side length is for the two points to be endpoints of such a side.   Thus, for the two 
points of Part (a) to have separation distance equal to 1/2, they would have to lie at the endpoints of a 
side of one of the four smaller triangles, and this would put them on an edge of the original (larger) 
triangle.  

EFR 5.5: Let 1 2 51, , ,a a a be the 51 positive integers.  For each ,ia we write 2 ,ip
i ia b where

ib is an odd integer.  Since there are exactly 50 odd integers between 1 and 100, it follows from the 

pigeonhole principle that at least two of the ia ’s must share the same odd integer: i.e., ,i jb b for two 

indices 1 51.i j It follows that either |i ja a (if )i jp p or | .j ia a

EFR 5.6: By Proposition 2.2, any integer must fall into one of n equivalence classes in the
equivalence relation of congruence modulo n.  Therefore by the pigeonhole principle, in a set of n + 1 
integers, there must be two, a and b,  that lie in the same equivalence class (mod n).  Thus a b
(mod ),n and this means (by definition) that n divides .a b

EFR 5.7: Part (a):  Since arrangements that are obtainable from one another by rotations are
considered equivalent, in counting all arrangements, we can place one particular person, call him/her X 
in some particular seat (since in any arrangement, X could always be brought to this seat with a 
rotation), and proceed, say clockwise, to fill the remaining 1n seats with the remaining  1n people.  
There are ( 1)!n such permutations of the remaining people, and all give nonequivalent seating 
arrangements of the whole group. 
Part (b):  We use the idea of Part (a).  Take X as a man, then the multiplication principle tells us that to 
fill the remaining 1 2 1n k seats with alternating men and women, there are ( 1) ( 1)k k k
( 2) ( 2) 2 2 1 1 ! ( 1)!k k k k ways to do this. 
Part (c):  Put Jimmy in a particular seat.  Now there are two choices where to put Sue, either 
counterclockwise or clockwise next to Jimmy.  After this choice has been made, of the 2n remaining
seats, the multiplication principle tells us there will be ( 1) ( 1) ( 2) ( 2) 2 2 1 1k k k k

2[( 1)!]k ways to fill these. Thus (again by the multiplication principle), there are 22 [( 1)!]k
different seating arrangements where Jimmy and Sue are sitting next to each other.
Part (d):  Put Jimmy in a particular seat.  Next, fill the counterclockwise and clockwise seats next to 
Jimmy; by the multiplication principle, there are ( 1) ( 2)k k ways to do this with women other than 
Sue.  Now, the remaining 3n seats (clockwise) can be filled in any way (alternating the 1k men 
and 2k women), so there are a total of   ( 1) ( 2) ( 2) ( 3) 2 1 1 ( 1)! ( 2)!k k k k k k
ways to do this.  Combining these counts (again with the multiplication principle) tells us that there are 
a total of 2( 2) [( 1)!]k k different arrangements.  
NOTE:  The reader should observe that the answers in Parts (c) and (d) should add up to the answer in 
Part (b), and verify that this is the case.  

EFR 5.8: Part (a):  The multiplication principle allows us to count the number of full houses as 
follows:

     Number of ways     Number of ways Number of ways Number of waysto choose denominationto choose denomination to choose3cards to ch  of the two of a kind  of the three of a kind from first denom.

13 12 (4,3) (4,2)C C

oose 2 cards
from second denom.

13 12 4 6 3744.
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Part (b):  As in Part (a), the multiplication principle yields the number of flushes to be

     Number of ways Number of ways    to choose the suit to choose5 cards       of the flush  from this suit

4 (13,5) 4 1287 5148.C

Part (c):  Once again, the multiplication principle can be used to tally the number of four of a kind 
poker hands

     Number of ways   Number of cards  The number of waysto choose denomination  to chooseto choose (all) four cards  of the four of a kind to complete the hand  from this denom. = 1.

13 (4, 4) 48 624.C

EFR 5.9: We use the identity (4) to translate binomial coefficient into factorial expressions, 
manipulate these and then translate back:

( 1)! ( 1)! ( 1)! ( 1)!1 1
1 ( 1)!( 1 [ 1])! ( )!( 1 )! ( 1)!( )! ( )!( 1 )!

( 1)! ( 1)!( ) [ ] ( 1)! ( 1)!
( 1)!( )! ( )!( 1 )!( ) !( )! !( )!

!

n n n nn n
k k k n k k n k k n k k n k

k n n n k k n k n n n
k k n k k n k n k k n k k n k

n .
!( )!

n
kk n k

EFR 5.10: Part (a):  If we apply the binomial theorem to expand 0 ( 1 1) ,m i.e., use x = 1 and 
1y in (6),  we obtain 

0 0
0 ( 1 1) ( 1) (1) ( 1) .0 1 2

m m
m k m k k

k k

m m m m m m
k k m

Since 1,0
m subtracting the other terms from both sides of the above equation produces the desired 

identity. 

Part (b):  Consider 1 ,n
iix A and suppose that x lies in exactly m of the iA ’s.  Then the counts for x

from all of the terms of the right-hand side of (1) will only go up to a = m (corresponding to 
intersections of m iA ’s).   The contribution of x from the summation in the ath term (with 1 )a m

1 2
1 2

1( 1) | |
a

a

a
i i i

i i i
A A A

will equal to the number of ways of choosing the a indices  1 2 ai i i from {1,2, , }n so that 

they all correspond to sets iA which contain x.   Since there are m such iA ’s, it follows that the 

contribution of x from this term must be 1( 1) .a m
a Adding up all of these contributions (from a = 1 

to a = m) gives exactly the sum ,1 2
m m m

m which, by Part (a) simply equals 1.  Since this 

is true for any  x in 1 ,n
ii A while for any x outside 1 ,n

ii A the contribution of x on the right (and 

the left) is clearly zero, the identity is established.  



Appendix B:  Solutions to All Exercises for the Reader 817

EFR 5.11: Of the 11 letters in the word MISSISSIPPI, only four are different:  there is one M,  four 
I’s, four Ss, and two Ps. Thus, by Theorem 2.8, the number of distinguishable permutations of these 11 

letters is 11! 4!11
1,4,4,2 1!4!4!2!

5 6 7 8 9 10 11
4! 2 3 4 2

34,650.

EFR 5.12: We give a combinatorial proof similar to what was done in our proof of the binomial 
theorem (Theorem 5.7).  If we expand the left-hand side of (8): 

1 2 1 2 1 2 1 2
 factors

( ) ( ) ( ) ( ) ,n
r r r r

n

x x x x x x x x x x x x

the resulting expansion will consist of all terms that are products of the form 1 2 ,nz z z where each iz

is a single term selected from the ith factor above (so each iz must be one of 1 2, , , ).rx x x Thus, each 

term in the expansion will be of the form 1 2
1 2 ,rk k k

rx x x where the exponents are nonnegative 
integers that add up to n.  By Theorem 5.8, the number of occurrences of this term in the expansion will 

equal 
1 2, , , r

n
k k k .   Putting these facts together shows that the expansion equals the right-hand side 

of (8), as desired.  

EFR 5.13: In the multinomial identity (8): 

1 2

1 2

1 2 1 2
1 2

nonnegative integer

( ) ,, , ,
r

r
i

k k kn
r r

rk k k n
k

nx x x x x xk k k

if we specialize to the case that r = 2, and put 1x x and 2 ,x y and use the fact that 

1 2 1
,,

n n
k k k and 2 1,k n k it becomes:  1 1

1 2
1

nonnegative integer

( ) .

i

k n kn

k k n
k

nx y x yk The proof 

is completed by noticing that this last summation is equivalent to 

1 1
1 0 01

.n nk n k k n k
k k

n nx y x yk k

EFR 5.14: By the multinomial theorem, the full term is 6 3 3 214 (2 ) ( 3 ) (4 ) ( ) .6,3,3, 2 a b c d

Working out the coefficient, we get 123,986,903,040.

EFR 5.15: Part (a):  Following the suggestion,  we view the problem as the equivalent problem of 
counting how many ways we can distribute 12 identical balls into 4 different urns: Urn 1, Urn 2, Urn 3, 
and Urn 4. Thus, ix represents the number of balls that are placed in Urn i.   By Theorem 5.10, it 
follows that the number of ways this can be done (= the number of nonnegative integer solutions to the 

given equation) is 1512 (4 1) 455.4 1 3
Part (b):  We introduce new variables 1,i iy x which will represent positive integers, and let the 

ix ’s still represent nonnegative integers.  Thus, the number of solutions of the equation 

1 2 3 4 12y y y y (in positive integers) is the same as the number of solutions of the equation 

1 2 3 4( 1) ( 1) ( 1) ( 1) 12x x x x or 1 2 3 4 8x x x x (in nonnegative integers).  By the 

method developed in the solution of Part (a), this latter equation has 8 3 11 1653 3 solutions, and 

so this is the number of positive integer solutions of the given equation.  
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EFR 5.16: The number of terms in the sum on the right-hand side of (8) (the multinomial theorem) 
is just the number of nonnegative integer solutions of the equation 1 2 .rk k k n By the 

method of the solution to Part (a) of the preceding exercise for the reader, this number is 1 .1
n r

r

EFR 5.17: Part (a):  Using (8), we obtain 2 3 4 2 2 2(1 ) /(1 ).x x x x x x x x

Part (b):  Substituting 2x x in (9), it becomes 
2 3

2 4 81 2 ,
2! 3!

x x xe x so the given generating 

function is 
2 3

2 4 8(1 ) 1 2 .
2! 3!

x x xx e x

EFR 5.18: Using Definition 5.6, for k > 0, we may write:

( )( 1)( 2) ( 1)
!

( )( 1)( 2) ( 1)( 1)
!

( 1)!( 1) ( 1) ( 1, ).
( 1)! !

k

k k

n n n n ka n
k k k

n n n n k
k

n k C n k k
n k

EFR 5.19: This follows directly from the generalized binomial theorem with ,a N along with 
the result of Exercise for the Reader 5.18 (with k changed to n, and n changed to N).

EFR 5.20: With a = 1/2, (10) becomes 1/ 2

0

1/ 2(1 ) .n

n
x xn Using Definition 5.6, for k > 1 we

may write:

1

(1/ 2)(1/ 2 1)(1/ 2 2) (1/ 2 1) (1/ 2)( 1/ 2)( 3/ 2) ([3 2 ]/ 2)1/ 2
! !

( 1) (2 3)(2 5) 3 1 ( 1) (2 3)(2 5) 3 1 ( 1) .
! !2 2

k k

k k

k k
k k k

k k k k
k k

The last manipulation was done because the final formula is also valid when k = 1.   Putting this all 
together, we may write:

1/ 2 2 3 4

1

( 1) (2 3)(2 5) 3 1 ( 1)(1 ) 1 / 2 /8 /16 5 /128 1 .
!2

n
n

n
n

n nx x x x x x
n

Substituting / 2x x in this expansion leads us to the desired expansion: 

2 3 4

1

( 1) (2 3)(2 5) 3 1 ( 1)1 / 2 1 / 4 /16 /32 5 / 256 1 .
!4

n
n

n
n

n nx x x x x x
n

EFR 5.21: We introduce the generating function for the sequence: 0( ) .n
nnF x a x We 

multiply both sides of the recurrence relation by ,nx and then take the formal (infinite) sum of both 
sides in the range 1n where the recurrence is valid:  

1 1
1 1 1

3 1 ( 1) 3 1 .n n n
n n n n

n n n
a a n a x a x x
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In the same fashion as in the solution of Example 5.22, this equation translates into the following 
algebraic equation for the generating function: 

1 1 1 2 1 2( ) 1 3 ( ) 1 (1 3 ) ( ) 2 ( ) .
1 1 1 (1 )(1 3 )

x xF x xF x x F x F x
x x x x x

The partial fractions expansion of the right side is:

1 2 .
(1 )(1 3 ) 1 1 3

x A B
x x x x

To determine the constants A and B on the right side, we first multiply both sides of the equation by the 
denominator on the right to obtain:  

1 2 (1 3 ) (1 ).x A x B x

If we substitute x = 1 into this equation, we obtain 1/ 2,A and substituting  x = 1/3 produces 
1/ 2.B The original equation now gives:  

1 1 1( ) .
2 1 1 3

F x
x x

Each of the terms on the right can easily be expanded using (8) (a special case of (12)):

0 0 0

1 1 1( ) ( ) (1/ 2) (1/ 2) (3 ) (1/ 2) (3 1) .
2 1 1 3

n n n n

n n n
F x F x x x x

x x

Thus we have found that (3 1) / 2.n
na

EFR 5.22: Following the method of the Examples 5.22 and 5.23, we let 0( ) n
nnF x a x be the 

generating function for the given sequence, multiply both sides of the recurrence relation by ,nx and 
then take the formal (infinite) sum of both sides in the range 1n (where the recurrence is valid):  

1 1
1 1 1

2 3 ( 1) 2 3 .n n n n n
n n n n

n n n
a a n a x a x x

The first two sums we have already seen, while the third sum on the right can be converted using the 
expansion (8) with the substitution / 2:x x

1 0

13 (3 ) 1 1.
1 3

n n n

n n
x x

x

Hence, the preceding power series equation transforms into the following algebraic equation for the 
generating function:

1 1( ) 1 2 ( ) 1 ( ) .
1 3 (1 2 )(1 3 )

F x xF x F x
x x x

The partial fractions expansion will have the form:

1( ) .
(1 2 )(1 3 ) 1 2 1 3

A BF x
x x x x

To determine the constants A, B, we first clear out all denominators:
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1 (1 3 ) (1 2 ).A x B x

Substituting x = 1/2 yields 2,A and substituting x = 1/3 yields 3.B Thus we have determined 
the partial fractions expansion of the generating function to be:

2 3( ) .
1 2 1 3

F x
x x

Applying the expansion (8) twice, we obtain

1 1

0 0 0

2 3( ) 2 (2 ) 3 (3 ) (3 2 ) .
1 2 1 3

n n n n n

n n n
F x x x x

x x

We have thus arrived at the following closed formula for the given recursively defined sequence:  
1 13 2 .n n

na

EFR 5.23: Although the Fibonacci recurrence relation involves two prior terms, the generating 
function approach will be the same.  We do make one small cosmetic adjustment because it is 
convenient to have our sequence indices begin at n = 0.  We introduce the shifted sequence 1,n ne f

which is defined for all 0,n and inherits the following recursive definition from that of :nf

0 1

1 2

1, 1,
( 2).n n n

e e
e e e n

It suffices to obtain an explict formula for ,ne since the corresponding formula for the Fibonacci 

sequence and then be read off from the relation: 1.n nf e

We let 0( ) n
nnF x e x be the generating function for sequence ,ne multiply both sides of the 

recurrence relation by ,nx and then take the formal (infinite) sum of both sides in the range 2n
(where the recurrence is valid):  

1 2 1 2
2 2 2

( 2) .n n n
n n n n n n

n n n
e e e n e x e x e x

Using the first two coefficients: 0 11, 1,e e we may transform each of these three sums in terms of 
the generating function:

1 2 2 2
1 1 2 2

2 2 2 2 2
( ) 1, ( ( ) 1), ( ).n n n n n

n n n n n
n n n n n

e x F x x e x x e x x F x e x x e x x F x

The preceding power series equation thus transforms into the following algebraic equation for the 
generating function:

2
2

1( ) 1 ( ( ) 1) ( ) ( ) .
1

F x x x F x x F x F x
x x

The denominator on the right has two real roots:  ( 1 5) / 2,x which we temporarily will denote 
by r and .r The partial fractions decomposition of ( )F x will take the form:

2
1( ) .

1 / 1 /1
A BF x
x r x rx x

To determine the constants A, B, we first clear out all denominators:
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1 (1 / ) (1 / ).A x r B x r

Substituting x = r yields 
1 ,

1 / 5
r rA

r r r r
and in a similar fashion, substituting x =

r yields .
5

rB Thus we have determined the partial fractions expansion of the generating function 

to be:

1( ) .
1 / 1 /5

r rF x
x r x r

Applying the expansion (8) twice, we obtain

0 0 0

1 1 1( ) ( / ) ( / ) ( (1/ ) (1/ ) ) .
1 / 1 /5 5 5

n n n n n

n n n

r rF x r x r r x r r r r r x
x r x r

We have thus arrived at a closed formula for the given recursively defined sequence, which we can 
simplify by noting that 1:r r

1 1 1 1

1 1

1 1 1 [( 5 1) / 2] [( 5 1) / 2]
5 5 5 ( 1)

1 5 1 1 1 5 .
2 25 5

n n n n

n n n n n n

n n

r r r re
r r r r

Finally, since 1,n nf e this translates to the following explicit formula for the Fibonacci sequence:

1 5 1 1 1 5 ,
2 25 5

n n

nf

which was first introduced in Chapter 3.

EFR 5.24: For both questions being asked, we may take the generating function for the number of 
$1 bills drawn to be 0 2 3 4 5 6( ) 1( ) .OF x x x x x x x x Since there are only five $10 bills, 

the corresponding generating function for the number of $10 bills drawn is ( ) 1TF x x
2 3 4 5,x x x x and since there are only two $100 bills, the generating function for the number of 

these bills drawn is 2( ) 1 .HF x x x The generating function for the both questions is the product 
of these three:

2 3 4 5 6 2 3 4 5 2( ) ( ) ( ) (1 ) (1 ) (1 ).O T HF x F x F x x x x x x x x x x x x x x

The number of ways that four bills can be drawn is the coefficient of 4x in this product, which can be 

computed to be 12, and the number of ways that six bills can be drawn is the coefficient of 6x in this 
product, which can be computed to be 17.

EFR 5.25: As was pointed out in Example 5.28, any winning coalition must contain either  1V or 

2;V below we consider only the winning coalitions:

1.   Four winning coalitions of the form 1 2{ , } ,V V S where S is any subset of  4 5{ , }:V V

Critical Voters:  1 2,V V

2.  Four winning coalitions of the form 1 3{ , } ,V V S where S is any subset of  4 5{ , }:V V
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Critical Voters:  1 3,V V

3.  Four winning coalitions of the form 2 3{ , } ,V V S where S is any subset of  4 5{ , }:V V

Critical Voters:  2 3,V V

4.  Four winning coalitions of the form 1 2 3{ , , } ,V V V S where S is any subset of  4 5{ , }:V V
Critical Voters:  None
It follows that 1 2 3 4 5( ) ( ) ( ) 4, ( ) ( ) 0, 12,c V c V c V c V c V T so the Banzhaf indices of 1 2 3, ,V V V

are each 1/3, and those of 4 5,V V are zero.   

EFR 5.26: Part (a):   Rather than going through all 62 1 65 coalitions, this example is small 
enough to take advantage of its special structure.  Clearly any winning coalition must include at least 
two of 1 2 3, , ;V V V and conversely any coalition containing two of these three voters will be winning.  
Here is a summary count of these winning coalitions along with critical voters:
1.  Eight winning coalitions of the form 1 2{ , } ,V V S where S is any subset of  4 5 6{ , , }:V V V

Critical Voters:  1 2,V V

2.  Eight winning coalitions of the form 1 3{ , } ,V V S where S is any subset of  4 5 6{ , , }:V V V

Critical Voters:  1 3,V V

3. Eight winning coalitions of the form 2 3{ , } ,V V S where S is any subset of  4 5 6{ , , }:V V V

Critical Voters:  2 3,V V

4.  Eight winning coalitions of the form 1 2 3{ , , } ,V V V S where S is any subset of  4 5 6{ , , }:V V V
Critical Voters:  None
It follows that 1 2 3 4 5 6( ) ( ) ( ) 16, ( ) ( ) ( ) 0, 48,c V c V c V c V c V c V T so the Banzhaf indices of 

1 2 3, ,V V V are each 1/3, and those of 4 5 6, ,V V V are zero.   

Part (b):   None of the voters are dictators or have veto power; but 4 5 6, ,V V V are dummies.

EFR 5.27: Step 1: The total weight is W = 5 + 2 + 1 = 8. The number of voters is N = 3.  
Set 0 1.Wa a Set (0)

0 1,a and (0) (0) (0)
1 2 8 0.a a a

Note:  (0)
ia are the coefficients of 0 ( ) 1.F x

Step 2: (Compute the ( )j
ia ’s)

FOR index j = 1, FOR index 0i TO 1,i W Set (1) (0) (0)
5:i i ia a a (since 1 5)w

(1) (0) (0) (1) (0) (0) (1) (0) (0)
5 5 5 50 0 0 5 1 1 1 5

(1) (0) (0) (1) (0) (0)
7 7 7 56 6 6 5

1 0 1, 0 0 0, , 0 1 1,
0 0 0, 0 0 0.

a a a a a a a a a
a a a a a a

Note:  (1)
ia are the coefficients of 1 5

1( ) 1 1 .wF x x x

FOR index j = 2, FOR index 0i TO 1,i W Set (2) (1) (1)
2:i i ia a a (since 2 2)w

(2) (1) (1) (2) (1) (1) (2) (1) (1)
0 0 0 2 1 1 1 2 2 2 2 2
(2) (2) (2) (2) (2)

5 73 4 6

1 0 1, 0 0 0, 0 1 1,
0 0 0, 0 0 0, 1 0 1, 0 0 0, 0 1 1.

a a a a a a a a a
a a a a a

Note:  (2)
ia are the coefficients of 1 2 5 2 2 5 7

2 ( ) (1 )(1 ) (1 )(1 ) 1 .w wF x x x x x x x x

FOR index j = 3, FOR index 0i TO 1,i W Set (3) (2) (2)
1:i i ia a a (since 3 1)w

(3) (3) (3) (3) (3)
0 1 2 3 4
(3) (3) (3)
5 76

1 0 1, 0 1 1, 1 0 1, 0 1 1, 0 0 0,
1 0 1, 0 1 1, 1 0 1.

a a a a a
a a a
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Note:  (3)
ia are the coefficients of 5 2 2 3 5 6 7

3( ) (1 )(1 )(1 ) 1 .F x x x x x x x x x x

Step 3: (Record the ia ’s) Set ( )N
i ia a ( 1i TO 1)i W

(3) (3)
1 2 3 4 5 6 71 21, 1, 1, 0, 1, 1, 1.a a a a a a a a a

Step 4: (Compute the n ’s)

FOR index n = 1, 5i i ib a b ( 0i TO 1 6)i q

0 0 0 5 1 1 1 5 2 3 4 5 61, 1, 1, 1, 0, 0, 0b a b b a b b b b b b

1

1
1 2 3 4 5 6 2q

ii q w b b b b b b

FOR index n = 2, 2i i ib a b ( 0i TO 1 6)i q

0 0 0 2 1 1 1 2 2 3 4 5 61, 1, 0, 0, 0, 1, 1b a b b a b b b b b b

2

1
2 4 5 6 2q

ii q w b b b b

FOR index n = 3, 1i i ib a b ( 0i TO 1 6)i q

0 0 0 1 1 1 1 1 2 3 4 5 61, 0, 1, 0, 0, 1, 0b a b b a b b b b b b

3

1
3 6 0q

ii q w b b

Step 5: (Compute the Banzhaf indices)

Set 1 2 2 0 4N
nnT

Banzhaf index of V1 = 1 /T 2 / 4 0.5, Banzhaf index of V2 =  2 /T 2 / 4 0.5,

Banzhaf index of V3 =  3 T/ 0 / 4 0.
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CHAPTER 5: Section 5.1: #1. (a) 10 26 103 3 175,760,000 (b)  10 26 25 24 9 8 7  

78,624,000 #3. 4 4 16 #5. (a)  5 4 3 2 1 120  (b)  2 1 3 2 1 12  (c)  2 4 3 2 1 48  #7.
(a) 12 11 10 1320 (b)  1320 9 8 7 816 (c) 7 6 5 (10 9 8 7 6 5) (9 8 7 7 6 5)

1014 (d)  3 2 10 10 9 8 780 #9. (a)  57  78,125 (b)  2 53 4 5000 (c)  0   #11. (a) 

[(3 2) / 2] 42 48  (b)  [(3 2) / 2] [(4 3) / 2]2 108 #13. (a) 62 625 6 627 3,579,330,974,624

(b)  
7

5
[62 (52 10 )] 2,531,097,358,400j j j

j
(c) 5 6 7 5 6 762 62 62 (52 52 52 )

5 6 7 5 6 7 5 6 72 (36 36 36 ) 2 (26 26 26 ) (10 10 10 ) = 2,386,621,947,840 (d)  23 8 62
3 3 4 2[4 8 62 8 ] [5 8 62 3 8 62] 598,760,224 #15. (a) 3257 (b)  3166 (c)  For part (a):

For the corresponding program for 
part (b) change 5 to 11, and replace
the three “OR”s with “AND”s and 
three “==”’s with “~=”’s.
#17. (a)  3506 (b)  The program is 
similar to the one for #15(a); just 
add one more letter d = n/11, and 
one more (OR) condition for d.   

#19. (a)  1598  (b)  830  (c)  
The program for part (a) is 
similar to that of parts (a) and 
(b) of Exercise 15.  By first
using the complement
principle, the problem of part
(b) is reduced to one like in
part (a), and can be
programmed accordingly.

Alternatively, a program can be written directly as shown (left):

set count = 0;
for n =  1 TO n = 5999

set a = n/3, b = n/5, c = n/7
if floor(a)==a OR floor(b)==b OR floor(c)==c

UPDATE count = count+1
end

end
OUTPUT count

set count = 0;
for n =  1 TO n = 3999

set a = n/2, b = n/3, c = n/5, d = n/7, e = n/11
if floor(a)~=a AND floor(b)~=b AND floor(c)~=c 

AND floor(d)~=d AND floor(c)~=c
UPDATE count = count+1

end
end
OUTPUT count

ANSWERS/BRIEF SOLUTIONS 
TO ODD-NUMBERED 

EXERCISES
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#21. (a)  Rounded to the nearest inch, there are exactly 20 possible heights between 5-0 and 6-7 (these 
are the pigeonholes), therefore, in a group of 21 men in this height range, at least two must be the same 
height.  (b)  We use the generalized pigeonhole principle with the four suits serving as the pigeons.  
The smallest integer N for which / 4 3N is N = 9, and so this is the smallest number of cards to 
guarantee at least three will have the same suit.  With only 8 cards, we could have 2 of each suit. #23
(a) The pigeonholes are the nine smaller equilateral triangles (each having side length 1/3) without their 
vertices, as shown in the figure.  If ten points are put in the interior of the big triangle, then at least two 
must lie in the same pigeonhole and therefore have distance between them less than 1/3.  (b)  If we take 
nine points to be the vertices of the smaller triangles that lie on the edges of the larger triangle, then any 

two of these will be at a distance of at least 1/3.    

Section 5.2: #1. (a)  CAT, CTA, ACT, ATC, TAC, TCA   (b) AB, 
BA, AC, CA, AD, DA, AE, EA, BC, CB, BD, DB, BE, EB, CD, DC, 
CE, EC, DE, ED  (c) {A,B}, {A,C}, {A,D}, {A,E}, {B,C}, {B,D}, 
{B,E}, {C,D}, {C,E}, {D,E} #3. (a) 6  (b) 1  (c)  132,600   (d)  15,504  
(e)  5  (f)  1  #5. (a)  C(12,3) = 220  (b)  3

0 (12, ) 299k C k #7. (a)  

C(12,4)  = 495  (b)  P(12,7) = 3,991,680  #9. (a) C(8,5) = 56  (b)  5(8,5) 3 13,608C (c)   
5 5(6,3) 3 (6,5) 3 6318C C (d) 4 5(6,3) 3 (6,5) 3C C = 3078   #11. (a)  C(26,2) = 325  (b)  

C(15,2) + C(11,2) = 160  (c)  (11,2) 11 15 220C #13. (a) 

(39, 4) (39,3) (13,1)  201,058C C C (b) 413 28,561 (c)  4(52,4) (13,1) (   )C C all different suits
= 242,164 #15. (a) C(8,5) = 56;  C(4,3) C(4,2) + C(4,4) C(4,1) = 24 + 4 = 28   #17. (a)  6!2! = 1440  
(b) 5!3! = 720   (c)  7!/3 = 1680  (d)  5! = 120  (e)  4! = 24 #19. (a)  10,897,286,400   (b)  P(14,9) + 
P(15,9) = 2,542,700,160 #21.  (a) 7 67x x z 5 2 4 3 3 4 2 5 6 721 35 35 21 7x z x z x z x z xz z (b) 

5 4 3 3 6 2 9 123125 3125 1250 250 25x x y x y x y xy 15y (c) 3 25 3 ( 4) 43203   #25. (a) 416x

3 3 2 2 2 2 2 3 2 2 3 464 160 96 480 600 64 480 1200 1000 16x y x z x y x yz x z xy xy z xyz xz y

3 2 2 3 4160 600 1000 625y z y z yz z (c) 6 420 2 3 42,237,882,086,4004,6,4,6

#27.(a)  4 4 62,2 2 (b) 8 16803,2,2,1 (c) 9 30,2403,2,1,1,1,1 (d)  10 75,6003,2,2,2,1

#29.  (a)  9 12603,2,4 (b) 3 3 3 1 26 (can’t have ggg)  (c)  226 3 3 38

#31.  (a) Let Ax be the number of $500 incremements placed in Fund A, and similarly for , .B Cx x The 
number of permissible fund allocations is the number of nonnegative integer solutions of the equation 

30;A B Cx x x and by Theorem 5.10, this number is  3230 (3 1) 496.3 1 2
(b)  Here we seek the number of solutions of the integer equation above with the additional constraints 
that , 5.A Cx x If we define 5, 5,A A C Cy x y x the problem is transferred to counting the 

number of nonnegative integer solutions of the equation 20.A B Cy x y By Theorem 5.10, it 

follows that this number is 2220 (3 1) 231.3 1 2
#33.  Think of placing the 12 donuts in an arbitrary dozen into 8 bins, according to the type of donut.  
By Theorem 5.10, it follows that the number of dozens of donuts is given by 

1912 (8 1) 50,388.8 1 7
#35.  (a)  Let S be a set of n (distinct) objects.  Any subset A of S containing k objects (i.e., a k-
combination) naturally corresponds to a subset of S containing n k objects, namely its complement 

.A S A   Since this correspondence is one-to-one, it follws that the number of k-combinations, 
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namely  ,n
k must equal the number of ( )-combinations,n k namely .n

n k A noncombinatorial 

proof is simpler (but less revealing) due to the symmetry in the definition of the binomial coeffients: 

! ! ! .
( )!( [ ])! ( )! ! !( )!

n n nn n
n k kn k n n k n k k k n k

(b) Answer:  If n is even, k = n/2; if n is odd, / 2  and / 2 .k n n
Proof: Suppose that 0 /2.k n Since this implies that 2 ,n k we obtain:

( 1)!( 1)! 1 2 1 1 1.1 !( )!
k n k n k k k kn n

k k k n k k k k

This proves that that the left half of the binomial coefficients are an increasing sequence:

./ 20 1 2
nn n n

n

From the symmetry result of part (a), it follows that the corresponding right half of the binomial 
coefficient sequence is decreasing:

./ 2 1 / 2 2 / 2 3
n n n n

n n n n

In case n is even, there is a single middle coefficient / 2 / 2
n n

n n that is larger than any other.  

In case n is odd, there are two equal largest middle coefficients ./ 2 / 2 1
n n

n n

#37.  (a) 0  (b)  6!  (c)  C(6,2) 5! (d)  72 2
#43.  We consider the combinatorial problem of choosing a team of k people with a designated team 
leader from a group of n people.   By the multiplication principle, the total number of ways to form 
such a team is 
(the number of ways to choose a subset k people from n people)
                                          (the number of ways of choosing a team leader from a team of k people) 

                                                      .n nk kk k
This number can also be computed as
(the number of ways to choose a leader from a group of n people)
                 (the number of ways of choosing the 1k non leaders from the remaining 1n people)

                                                     1 .1
nn k

It follows that  1 .1
n nk nk k

Section 5.3: #1. (a)  2 3
01 ( 1)n n

nx x x x (b)  2 4 66 4 2x x x

#3. (a)   
11 11

102 3 9 10
0

1 ( ) 11 ( ) .
1 ( ) 1

n
n

x xx x x x x x
x x

(By use of Proposition 3.5.)

(b)  Using the binomial theorem, we may write: 
10 102 10 10 10

0 0(10,0) (10,1) (10,2) (10,10) (10, ) (10, ) 1 ( 1) .n n n
n nC C x C x C x C n x C n x x

(c)
5 5

52 3 4
0

1 ( 2 ) 1 3220 40 80 160 320 20 ( 2 ) 20 20 .
1 ( 2 ) 1 2

n
n

x xx x x x x
x x

(By use of 

Theorem 3.5.)
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(d) Using the binomial theorem, we may write:  
2 3 4 5 6 7

5 52 2 5 2 5
0 0

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(5, ) (5, ) 1 ( 1) .n n n
n n

C x C x C x C x C x C x

x C n x x C n x x x

#5. (a)   0
By (8)

1 1( )
1 ( ) 1=n

n x
x x

               (b)   2
0 0

By (9)

( 2) ( 2 )
! ! =

n n
n x

n n
xx e

n n

(c)   0
By (8)

1 1( ) 5 5 4
1 ( ) 1=n

n x x x x x x
x x

(d)   
2

2 2
0 0 2 2

By (9)

1 1
( 2)! ( 2)! ! =

n n x
n

n n n
x x e xx x x

n n n x

#7. (a)  Using the binomial theorem:  4 43 4 3 4 4 3
0 0( 5) (4, ) 5 [ (4, )5 ] ,n n n n

n nx x x C n x C n x so 

the sequence is:  4(4, )5 if 3, 4,5,6,7 and 0 if 0,1, 2.n
n na C n n a n

(b)  Using the binomial theorem:
3 5 2 3 5 2 3 5(1 ) (3,0) (3,1)( ) (3,2)( ) (3,3)( ) 1 3 3 ,x x C C x C x C x x x x x x

so the sequence is:   0 1 2 3 4 51, 3, 3, 1, 0,  1.a a a a a a

(c)   0
By (8)

1/(1 3 ) 1/(1 ( 3 )) ( 3 ) ,= n
nx x x so the sequence is ( 3) ( 0,1,2, )n

na n                

(d)  From the expansion:  0
By (8)

1/(1 ) /(1 2 ) 1/(1 ( )) 1/(1 (2 )) ( )= n
nx x x x x x x    

0 0( 2 ) 1 [( 1) ( 2) ] ,n n n n
n nx x x the sequence is: 0 1, ( 1) ( 2) ( 1,2,3, ).n n

na a n

(e)  We clear out denominators in the partial fractions decomposition: 1/[(1 )(1 2 )]x x
/(1 ) /(1 2 ),A x B x to obtain:   1 (1 2 ) (1 ).A x B x Substituting 1x yields A = 1/3, and 

substituting  1/ 2x yields B = 2/3.   Next, 0
By (8)

[1/(1 ) 2 /(1 2 )] (1/3) ( )= n
nx x x

0 0(2 /3) (2 ) [( 1) / 2 2 2 /3] ,n n n n
n nx x so the sequence is [( 1) 2 2 ]/3( 0,1,2, )n n

na n                

(f)  Using (9), we may write: 2 2 2 2
0 0 0(1 ) [ / !](1 ) [2 / !] [2 / !]x n n n n n

n n ne x x n x n x n x

2
0 2[2 / !] [2 /( 2)!] ,n n n n

n nn x n x so the sequence is  2
0 11, 2, 2 / ! 2 /( 2)!n n

na a a n n

( 2,3, 4, )n

#9. (a)  5  (b)  3  (c)  4 (d)  14 
#11. (a)  3 3

3 30 0 0 3
n n n n

n n n n n nn n n nb x x a x a x a x b a (which tacitly implies 

0 1 2 0,b b b because of the convention that unassigned coefficients, like 1 2, ,a a are taken to 
be zero).
(b)  1

10 0 0 0 0(1 ) [ ]n n n n n
n n n n n nn n n n nb x x a x a x a x a a x        

1n n nb a a (which tacitly implies 0 0 ).b a

(c)  0 0 0 0 0 0
By (8)

1 / (1 ) [ ]= nn n n n n
n n n kn n n n n kb x a x x a x x a x        

                                   0 .n
n kkb a

#13. (a)  56 (b)  –0.02734375 

#15. (a)  With a = 1/ 2, (10) becomes 1/2

0

1 / 2(1 ) .n

n
x xn Using Definition 5.6, for k > 1 

we may write:
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( 1/ 2)( 1/ 2 1)( 1/ 2 2) ( 1/ 2 1) ( 1/ 2)( 3 / 2)( 5 / 2) ([1 2 ] / 2)1/ 2
! !

( 1) (2 1)(2 3) 3 1.
!2

k

k

k k
k k k

k k
k

It follows that 

1/ 2 2 3 4

0

( 1) (2 1)(2 3) 3 1(1 ) 1 / 2 3 / 8 5 /16 35 /128 .
!2

n
n

n
n

n nx x x x x x
n

(b)  (i) With a = 7 / 2, (10) becomes 7 / 2 2 3

0

7 / 2 7 / 2 7 / 2 7 / 2(1 ) 1 1 2 3
n

n
x x x x xn

Since 7 / 2 7 7 / 2 5/ 2 35 7 / 2 5/ 2 3/ 2 357 / 2 7 / 2 7 / 2, , ,1 2 31! 2 2! 8 3! 16
we may write:

7 / 2 2 3(1 ) 1 7 / 2 35 /8 35 /16x x x x
(b)  (ii) Using (9) and the expansion obtained in part (a), and then multiplying the two generating 
functions (according to Definition 5.5), we obtain:

1/ 2 2 3 2 3

2 3
/ 1 (1 ) (1 / 2! /3! ) (1 / 2 3 /8 5 /16 )

1 / 2 3 /8 / 48

x xe x e x x x x x x x
x x x

#17. (a)  Let 0( ) .n
nnF x a x 12 5 ( 1)n na a n 11 1 12 5n n n

n nn n na x a x x

2 3( ) 3 2 ( ) 5/(1 ) 5 ( ) .
(1 2 )(1 ) 1 2 1

x A BF x xF x x F x
x x x x

To find A and B in this 

partial fractions expansion, we first clear out the denominators 2 3 (1 ) (1 2 ).x A x B x
Substituting x = 1 gives 5,B and substituting x = 1/2 gives 8.A Applying the expansion (8) we 

obtain:   3

0 0 0

8 5( ) 8 (2 ) 5 (2 5) ,
1 2 1

n n n n

n n n
F x x x x

x x
and hence:  32 5.n

na

(b)  Let 2 ( 0),n nb a n so that 0
1

1 .3 1 ( 1)n n

b
b b n By the solution of Exercise for the Reader 

5.21, we have (3 1) / 2,n
nb so it follows that 2

2 (3 1) / 2 ( 2).n
n na b n

(c)  Let 0( ) .n
nnF x a x 12 3 ( 1)n na a n n 11 1 12 3n n n

n nn n na x a x nx

1 1
11 1 12 3 .n n n

n nn n na x x a x x nx Using expansions (8) and (11), this translates 

into:
2

2
2 2

1( ) 1 2 ( ) 3 /(1 ) ( ) .
1 2 1(1 2 )(1 ) (1 )

x x A B CF x xF x x x F x
x xx x x

To find A, B,

and C in this partial fractions expansion, we first clear out the denominators 
2 21 (1 ) (1 )(1 2 ) (1 2 ).x x A x B x x C x Substituting x = 1 gives 3,C substituting x =

1/2 gives 7,A and substituting x = 0 now gives 3.B Applying the expansions (8) and (11) we 

obtain:   0 0 02
7 3 3( ) 7 (2 ) 3 3 ( 1) ,

1 2 1 (1 )
n n n

n n nF x x x n x
x x x

and hence:  

7 2 3( 2).n
na n

(d)  Let 0( ) .n
nnF x a x 22 5 ( 2)n na a n 22 2 22 5n n n

n nn n na x a x x

2 2
22 22 5 .n n

nn nx a x x Using expansion (8), this translates into: 
2

2
2

4 1( ) 1 2 ( ) 5/(1 ) 5 5 ( ) .
11 2 1 2(1 2 )(1 )

x A B CF x x x F x x x F x
xx xx x

To 

find A, B, and C in this partial fractions expansion, we first clear out the denominators 
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2 24 1 (1 2 )(1 ) (1 2 )(1 ) (1 2 ).x A x x B x x C x Substituting x = 1, 1/ 2 ,x

1/ 2 ,x gives 5, 3/(2 2 ), 3/(2 2 ),C A B respectively.  Applying the expansion (8)

we obtain:  0
3/(2 2 ) 3/(2 2 ) 5( ) 3/(2 2 ) ( 2 )

11 2 1 2
n

nF x x
xx x

                                                                                      0 03/(2 2 ) ( 2 ) 5 ,n n
n nx x

and hence: 
1

3( 2 ) /(2 2 ) 3( 2 ) /(2 2 ) 5 (3/ 2)[2 2 (1 ( 1) ) 2 (1 ( 1) )] 5.
n nn n n n

na
(The reader is encouraged to check the correctness of this explicit formula by using the recursive one.)
(e)  Let 0( ) .n

nnF x a x 2 12 ( 2)n n na a a n 2 12 2 22n n n
n n nn n na x a x a x

2 2 1
2 12 22 n n

n nn nx a x x a x 2 1( ) 1 2 2 ( ) ( ( ) 1) ( )
(1 2 )(1 )

xF x x x F x x F x F x
x x

0
by (8)

1 (2 ) 2 .
1 2

n n
nn x a

x

#19. (a)  We note that the recurrence relation 1 2 1 01 2 3 ( 1)n n na a a na n a remains valid 

when n = 0, and hence for all 0.n Let 0( ) .n
nnF x a x The recurrence relation implies that:

1 2 1 00 0 0 0[ 2 3 ( 1) ] ( 1) .nn n n
n n n n kn n n kx a a a na n a x k a x

The expansion on the left is just (8), the generating function of 1/(1 ).x By Definition 5.5 and by 

(11), we see that the series on the right is just the product of the generating functions 21/(1 )x and 

( ).F x Thus, the equation translates to:  2
1 ( ) ( ) 1 .

1 (1 )
F x F x x

x x
The sequence defined by 

the recursion is thus the very simple sequence:   0 11, 1, 0 ( 2).na a a n (The reader may wish 
to verify this directly.)
(b)  We let 0( ) .n

nnF x a x Unlike in part (a), the recursion formula is not valid when n = 0, it 

gives:   1 1 0( 1) .nn n
n kn n knx k a x The series on the left is 1

1
n

nx nx

2
0

by (11)
( 1) /(1 ) .n

nx n x x x The series on the right is the same as the corresponding series of part 

(a), less the zeroth term 0 0
00( 1) 2.kk k a x We are thus led to the equation:  2/(1 )x x

2 2 2( ) /(1 ) 2 ( ) 2(1 ) 2 3 2 .F x x F x x x x x   The sequence defined by the recursion is 

thus:   0 1 22, 3, 2, 0 ( 3).na a a a n (The reader may wish to verify this directly.)

#21. (a)  (i)   2 3 4 5 6 7 3(1 )x x x x x x x Seek coefficient of 7.x (ii)    36

(b)  (i)   2 3 4 5 6 7 2(1 )x x x x x x x Seek coefficient of 7.x (ii)    8

(c)  (i)   2 3 10 3(1 )x x x x Seek coefficient of 10.x (ii)    66

#23. (a)  (i)   2 3 4 5 6 7 3 5 7 2 3 4 5 6 7(1 ) ( ) ( )x x x x x x x x x x x x x x x x x x

Seek coefficient of 7.x (ii)    12

(b)  (i)   3 5 7 2 3 4 5( ) (1 )x x x x x x x x x Seek coefficient of 7.x (ii)    3

(c)  (i)   2 3 10 2 3 10 2 3 10(1 ) ( ) ( )x x x x x x x x x x x Seek coefficient of 
10.x (ii)    36

#27. (a)  For any positive integer k, the generating function for the number of parts of size k being used 
in a given partition is:  2 3( ) 1 ,k k k

kP x x x x which by (8) with the substitution kx x can 
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be rewritten as ( ) 1/(1 ).k
kP x x The generating function for ( )mp n will thus be the product m of 

these functions:   2
1 2( ) ( ) ( ) 1/(1 ) 1/(1 ) 1/(1 ),m

mP x P x P x x x x as asserted.

Of course, to use this generating function to compute ( ),mp n we would work with the polynomial 

form:  2 3 2 4 2
1 2( ) ( ) ( ) (1 )(1 ) (1 ),m m

mP x P x P x x x x x x x x where in each 

parenthesized polynomial, only terms of degree at most n are listed.   Thus, to compute ( ),p n for n = 

4, 5, 6, and 8, we need only look for the coefficients of 4 5 6 8, , ,x x x x in the expansion of:
2 8 2 4 6 8 3 6 4 8 5 6 7 8(1 )(1 )(1 )(1 )(1 )(1 )(1 )(1 ).x x x x x x x x x x x x x x x

Computing the indicated coefficients in this product leads us to:  (4) 5, (5) 7, (6) 11,p p p and 
(8) 22.p

(b) The problem asks for the value of 5(15),p and this will be the coefficient of 15x in 5( ).G x As
explained above, we may work with the expansion: 

2 15 2 4 14 3 6 15 4 8 12 5 10 15(1 )(1 )(1 )(1 )(1 ).x x x x x x x x x x x x x x x
Computing the indicated coefficient in this product leads us to:  5(15) 84.p
#29. (a)  Since each positive integer k appears either exactly once or not at all in such a partition for n,
the generating polynomial for the appearance of k is 1 ,kx and so the generating function of ( )Dp n is 

the product of these polynomials, over all positive integers k:   2 3(1 )(1 )(1 ) .x x x
(b) To compute ( )Dp n for n = 4, 5, 6, 7, and 10, we need only look for the coefficients of

4 5 6 7 10, , , ,x x x x x in the expansion of:
2 3 4 5 6 7 8 9 10(1 )(1 )(1 )(1 )(1 )(1 )(1 )(1 )(1 )(1 ).x x x x x x x x x x

Computing the indicated coefficients in this product leads us to:  (4) 2, (5) 3, (6) 4,D D Dp p p

(7) 5Dp and (10) 10.p

#31. The generating function for the sequence na the number of ways to express n as a sum of 

distinct powers of 2 ( 1)n is 2 4 8( ) (1 )(1 )(1 )(1 ) .F x x x x x It suffices to show that 
2 3

by (8)
( ) 1 1/(1 )F x x x x x (i.e, this implies 1na for all positive indices n),  and we will

accomplish this by showing that  (1 ) ( ) 1.x F x We repeatedly apply the identity: 
2( 1)( 1) 1:k k kx x x

2 4 8

2 2 4 8

4 4 8

(1 ) ( ) [(1 )(1 )](1 )(1 )(1 )
[(1 )(1 )](1 )(1 )
[(1 )(1 )](1 )

1.

x F x x x x x x
x x x x
x x x

More formally, by iteratively making the substitutions 2 2 2 2( 1)( 1) 1,
j j j

x x x the coefficient of 
any fixed positive power is shown to be zero. 
#35. (b)  37,917   
(c) (x x2 9x )(1 x x2 9x ) 1 (x 1 x )(19 x )k k10 (11 )x k
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