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An Overview of 
the Subject

In this chapter we introduce some key definitions and general concepts of 
cryptography that will be used throughout the text. A few simple exam-
ples of cryptosystems are provided to help better illustrate the topics. The 
chapter also provides a road map of the various parts of the subject and 
where they will be developed in the book. Cryptography has a fascinating 
history, elements of which punctuate this chapter as well as latter portions 
of the text. We point out that the general tone of this chapter is informal, 
and some of the preliminary definitions given here are developed more 
rigorously in later chapters, after the needed mathematical concepts have 
been considered.

Basic Concepts
Cryptography is the science of protecting data and communications. One 
of its main components involves communicating messages or information 
between designated parties by changing the appearance of the messages 
(or data) in ways that aim to make it extremely difficult or impossible for 
other parties to eavesdrop on or interfere with the transmission. Other 
important aspects include authentication, which allows receiving parties 
the means to ascertain that the communication really does come from the 
designated sender, and integrity, which, among other things, ensures that 
the message received has not been altered. The subject of cryptography is 
as old as written languages. There have always been situations where it is 
important to convey a confidential message. A spy’s life could depend on 
certain messages not being compromised; launch codes for nuclear and 
other weapons of mass destruction, if cracked, could cause the demise of a 
whole city, a country, or even the world. Keeping data and messages confi-
dential has become an essential and almost daily issue for almost all of us 
in our high-tech society. When anyone sends out a personal e-mail, he or 
she certainly would like to know all who might be able to read it. A super-
visor or even a curious coworker may have easy access. Cryptography 
is vital to electronic commerce, for otherwise it would not be possible 
to make credit card purchases over the Internet or to wire money from 
a bank to another location. As our point of departure into this exciting 
subject, we consider Figure 1.1, which shows the basic idea behind most 
cryptosystems.
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The characters Alice and Bob (the communicating parties) and Eve (the 
evil eavesdropper) of Figure 1.1 have become standard in cryptographic 
literature and are used throughout this book.* Another character—Mallory 
(the malicious manipulator)—will be later introduced as one who tries to 
fabricate messages or otherwise corrupt communications. As with any sort 
of security system, greater levels of security that are desired or required 
need more sophisticated systems to prevent breaches by intruders who 
must employ more sophisticated means to breach the system. The devel-
opment in this book is given in essentially chronological order, with the 
math tools being introduced as they are needed. One general trend is that 
as cryptosystems have developed over several centuries, the mathematical 
foundations on which they rely have become increasingly sophisticated.

Any cryptographic system must anticipate attacks by hackers who might 
try to break the code of the transfer and thus compromise the data integrity. 
The advent of high-speed computers has had a tremendous impact on the 
standards for what are considered to be effective ciphers or cryptosystems, 
which are algorithms for rendering messages unintelligible except to the 
designated recipients. A cryptosystem has two parts: encryption, which is 
done at the sender’s end of the message and means to put the actual plain-
text (original message) into ciphertext (secret code), and decryption, which 
is done at the recipient’s end and means to translate the ciphertext back into 
the original plaintext message. Encryption and decryption are done using a 
key, or perhaps two keys (one to “lock” the message in the encryption stage 
and the other to “unlock” it during decryption), along with algorithms that 

* The names in our picture have become folk tradition in cryptography circles. Later, we will 
examine a related problem where a different sort of hacker tries to send phony messages 
to Bob, while attempting to make him think they came from Alice. Such an individual is 
called a “Mallory.”

Hey Bob,

you’ll never

guess what....

Hey Bob,

you’ll never

guess what...

Encryption

Key

Decryption

Key

Plaintext

Alice, sender Bob, intended

recipient

XFLXQR

TCAZRPS

DSGEET... 

Ciphertext

Eve, eavesdropper

Plaintext

Figure 1.1 A basic reference illustration for a cryptosystem. Alice, the 

sender, wishes to send Bob, the intended recipient, a confidential message. 

On Alice’s end, the message gets encrypted before it is sent to Bob, who, 

as the designated recipient, will be able to decrypt the message. Eve, the 

eavesdropper (a hacker), tries to intercept this message but will not have the 

key to decode it.
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can perform the encryption and decryption. It can usually be assumed that 
hackers will be able to determine the cryptosystem that is used, but with-
out complete knowledge about the corresponding keys, the system should 
remain secure. Thus, certain details of the keys must be kept secret.*

Depending on the usage, the consequences of an unauthorized break-in, 
and the skill level of anticipated hackers, a cryptosystem may be simple or 
may be very sophisticated. High-speed computers have made it possible to 
implement extremely sophisticated cryptosystems, but at the same time, 
hackers can use powerful computing tools to help them in being able to crack 
cryptosystems. Cryptography is a huge industry with many public and pri-
vate companies working hard to keep the technology state-of-the-art and to 
keep one step ahead of hackers. The latest technologies in the field depend 
heavily on many mathematical tools ranging from abstract algebra and num-
ber theory to probability. The U.S. federal government is, of course, a big 
user and consumer of cryptography. Usage comes not only from the defense 
and intelligence industries (Pentagon, CIA, FBI, and so forth) but also from 
financial and technology industries. The branch in the U.S. government that 
is solely dedicated to cryptography is the National Security Agency (NSA). 
The NSA constantly and actively recruits people with mathematics and com-
puter science degrees (from bachelor’s degrees to PhDs).

Cryptosystems can be implemented on any alphabet. An alphabet is 
any finite set of symbols. Any ordered sequence of letters from a certain 
alphabet is called a string (from the alphabet).† For example, QXUZTKM 
is a string of length 7 (since it has seven alphabet characters) in the alpha-
bet of the 26 uppercase English letters {A, B, C, …, Y, Z}. Binary strings 
(also called bit strings) are strings from the binary alphabet {0, 1}; for 
example, 011100 is a bit string of length 6 (since it consists of six charac-
ters). The individual digits in a binary string are called bits. The plaintext 
and ciphertext may be represented in different alphabets. Thus, although 
it is most convenient to input a plaintext message in a familiar alphabet 
(such as English letters and digits), the ciphertext produced by the com-
puter would probably be formed in an alphabet that is efficient for com-
puter architecture and manipulations (such as the binary alphabet).

All cryptosystems require algorithms and/or functions to accomplish 
the encryption and decryption processes. Algorithms are simply lists of 
instructions (or programs or procedures) designed to accomplish certain 
tasks. The concept of a function is also very general, involving rules or for-
mulas that show how to get an associated output for each permissible input 
value. Functions can be described in many ways, using graphs, tables, 
formulas, or algorithms. For example, a table giving the daily high tem-
peratures (rounded to the nearest degree Fahrenheit) at the Los Angeles 
International Airport for every day over the past five years is a function. 
The inputs are the days over the past five years, and the outputs are the 
corresponding high temperatures. To find the output of this function for a 

* Traditionally, cryptography referred to the design of cryptosystems, cryptanalysis to 
methods of attacking them, and cryptology to both of these tasks. Increasingly, cryptog-
raphy is replacing cryptology as the main descriptor of the field, and we will adhere to 
this convention. 

† Like sets, strings can be empty; but since empty strings will be unusual in our work, our 
default assumption will be that strings are nonempty unless explicitly stated otherwise. 
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given day (over the past five years), we simply look up the temperature on 
that day in the table. Since functions are used throughout the subject of 
cryptography, we will now provide a formal definition.

Functions

Definition 1.1

A function (or mapping) from a set A (= the set of inputs) to a set B 
(= a set containing all possible outputs) is a rule, formula, or algorithm 
that assigns to each element a A∈  (an input) a unique element f a B( ) ∈  
(the corresponding output). The element f a( ) is also called the image 
of a under f, and if f a b( ) ,=  we say that f maps a to b. The notation 
f A B: →  is used to indicate that f is a function from the set A to the 
set B. The set A is called the domain of the function, and the set B is 
called the codomain. The set of all outputs of f is called the range of f 
and is denoted as f A( ). Note that the range is a subset of the codomain, 
that is, f A B( ) .⊆

It is helpful to visualize a generic function with a diagram such as the one 
shown in Figure 1.2.*

In contrast with calculus courses, almost all of the functions that are 
dealt with in cryptography have domains and codomains that are either 
finite sets or discrete infinite sets.† For functions involving small domains 
and codomains, diagrams can easily be drawn describing their actions; 
the following example demonstrates this idea.

Example 1.1

Which of the three diagrams in Figure 1.3 represent(s) functions 

from the domain {a, b, c} to the set {1, 2, 3}?

Solution: The rule F is not a function since the input b is assigned 

to have two outputs. The other two rules specify functions, since 

each element of the domain {a, b, c} is assigned exactly one 

output in the codomain. 

* In lower-level mathematics classes, students are sometimes taught that a function is just 
a formula such as f (x) = x2. What is usually intended is that the domain is taken to be the 
largest possible subset A of real numbers for which the formula makes sense (in this case 
A = {real numbers}), and so f : A → {real numbers}.

† Unlike continuous infinite sets such as the set of real numbers that contains whole intervals 
of numbers, discrete infinite sets can be formed by taking a union of an infinite sequence of 
finite sets. For example, binary strings of any fixed length form a finite set. But the set of all 
binary strings of finite length, the union of all of the sets of binary strings of length 0, 1, 2, 3, 
and so forth, is an example of a discrete infinite set. Here is another distinction. It is always 
possible to represent any element of a discrete set with a finite string (in some alphabet), 
whereas for continuous infinite sets, this typically cannot be done. For example, there are 
many real numbers whose decimal expansions are nonending and nonrepeating, and would 
require an infinite string of decimal digits to write down. 
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We point out two important observations about the functions G and 
H of Example 1.1. First, note that G(a) = G(b) = 1, that is, two inputs 
are assigned a single output; a function is allowed to do this (but not the 
other way around). The function H does not do this: different outputs are 
assigned different inputs. Second, note that not every element of the codo-
main of G is an actual output: 3 does not occur as an output, but the 
function H does actually realize each element of its codomain as an out-
put. These two properties of H are very important, and they are the given 
official designations in the following definition.

One-to-One and Onto Functions, Bijections

Definition 1.2

Suppose that f A B: →  is a function.

 (a) We say f is one-to-one if different inputs are always assigned 
different outputs; in other words, if two elements x y A, ∈  have 
the same outputs (under f    ): f x f y( ) ( ),=  then they must be the 
same: x = y.

 (b) We say f is onto if every element of the codomain B occurs as an 
actual output; in other words, if b is an element of the set B, then 
there exists an element a of the domain such that the output of a 

is b: f a b( ) .=  In other words, the range equals the codomain, 
i.e., f A B( ) .=

 (c) We say f is bijective, or a bijection, if it is both one-to-one and 
onto. 

A B

f (A)

a

f (a)

f

A = Domain

    = Input Set 
B = Codomain

    = Output Target Set

f (A) = Range 

        = Set of Actual Outputs

Figure 1.2 Schematic diagram of a function f: A → B with the output f (a) of 

an element in the domain A. The range f (A) (shaded on the right) is a subset 

of the codomain B.
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Figure 1.3 Three diagrams assigning elements of the set {a, b, c} to ele-

ments of the set {1, 2, 3}.
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Note that the temperature function mentioned earlier (with domain being 
the days over the past five years, codomain being the set of integers 
{ , , , , , , , , },− − −3 2 1 0 1 2 3 and rule specified by a table giving the high 
temperature at the LAX airport each day) is not a one-to-one function 
since there are different days (over the past five years) that had the same 
high temperature (that is, two inputs share the same output). This function 
is also not onto (Why?).

Example 1.2

Determine whether the following functions are one-to-one and/

or onto:

 (a) F a b c x y z: { , , , , , , } { , , , , , , }→ 0 1 2 23 24 25  defined by 

the rule

  F(ith letter of the alphabet) = i – 1.

  This rule is an abbreviation for writing out each of the 

26 input/output relations:

  F(a) = 0, F(b) = 1, F(c) = 2, F(d) = 3, etc.

 (b) The  function   G : {length 4 binary strings} {length 3 binary→
strrings} defined by the rule

  G b b b b b b b( )1 2 3 4 1 2 4=

  (i.e., the third binary digit is deleted from the input to 

produce the output; for example, G(0010) = 000).

 (c) The function H : {length 3 binary strings} {length 4 binary→  

strrings} defined by the rule

  H b b b b b b b( )1 2 3 1 2 3= ∗

  where the final bit of the output, b∗, is taken to be 0 if the 

first three bits add up to an even number, and 1 if they 

add up to an odd number. For example, if b b b1 2 3 = 101, 

then b b b1 2 3 1 0 1 2+ + = + + = , which is even, so b∗ = 0, 

and thus H(101) = 1010. Similarly, H(100) = 1001.

Solution: Part (a): This function F is both one-to-one and 

onto; it merely codes each letter (input) into its uniquely defined 

place in the alphabet, less one (output). Thus, no two letters 

are assigned the same output (one-to-one), and the codomain 

consists exactly of all of the outputs (onto).

Part (b): This function G is onto but not one-to-one. To see 

why it is onto, consider any length-3 binary string c c c1 2 3 where 

ci = 0 1, or  (that is, any element of the codomain), and notice that 

it will be the output of G applied to either of the length-4 binary 

strings c c c1 2 30  or c c c1 2 31 . The fact that these two different inputs 

have the same output shows also that G is not one-to-one.
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Part (c): This function H is one-to-one but not onto. To see 

that it is one-to-one is easy: if H b b b H c c c( ) ( ),1 2 3 1 2 3=  this means 

that b b b b c c c c1 2 3 1 2 3
∗ ∗= . But for two strings to be the same, 

each of the corresponding components must be equal. Just 

looking at the first three gives b c b c b c1 1 2 2 3 3= = =, , , which is 

tantamount to b b b c c c1 2 3 1 2 3= . To see that H is not onto, notice 

that since the fourth bit, b∗, of the output H b b b b b b b( )1 2 3 1 2 3= ∗ 

is completely determined by the input bits, only one of the two 

strings b b b b b b1 2 3 1 2 30 1,  will be an output. For example, since 

H(101) = 1010, the string 1011 will not be an output. 

Given any alphabet A, the set of all finite strings in A includes all strings 
with characters in A of length 1, 2, 3, and so on, and also includes a single 
empty string that contains no characters and so has length 0. We denote 
this empty string as ∅. Given two strings σ1 and σ 2 in A, having respective 

length 1 and 2, their concatenation σ σ1 2⋅  is the string of length 1 2+  
obtained by pasting the string σ 2 at the right end of string σ1.

Exercise for the Reader 1.1

 (a) Is function C : {finite length binary strings} → {finite length 
binary strings} defined by C( )σ = ⋅1010 σ  one-to-one? Is it 
onto?

 (b) Determine whether the following function is one-to-one:

  D : {length 3 binary strings} {length 3 binar→ yy strings} defined 
by D b b b d d d( ) ,1 2 3 1 2 3=  where d b1 1=  and

d
b b
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Inverse Functions
The one-to-one property of a function is very important when we use 
functions in cryptosystems because their processes can be reversed. 
Since there is only one input for each realized output, the association can 
be reversed; think of a function diagram as in Figure 1.2: when a func-
tion is one-to-one, the arrows can be reversed. If a function f A B: →  
is also onto (so a bijection), then every element of the codomain is an 
output that corresponds to a unique input, and so we can define a func-
tion from B to A by associating each element b B∈  the corresponding 
input under f whose output is b. We call this function the inverse func-
tion of f, and it is denoted as f B A− →1 : . Thus, f b a− =1( )  if, and only if, 
b f a= ( ). The inverse function simply “undoes” what the function does; 
see Figure 1.4.
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Example 1.3

 (a) Letting F be the bijection of Example 1.2(a), determine 

the string F F F F F F− − − − − −1 1 1 1 1 16 4 13 4 21 0( ) ( ) ( ) ( ) ( ) ( ).

 (b) Consider the function F : { , , , } { , , , }1 2 3 4 1 2 3 4→  defined by 

the rule that for each a ∈{ , , , },1 2 3 4  F a( ) is the remainder 

when a3 is divided by 5.* Determine whether the inverse 

function F −1 exists, and if it does, explain how it works.

Solution: Part (a): It is helpful to draw a table for the values 

of F; see Table 1.3 later in this chapter (but change letters to 

lowercase). From such a table, we can easily identify the given 

string to be “geneva.”

Part (b): The domain is small enough so that we can compute 

all of the values of F rather quickly: Since 1 1 5 0 13 = = ⋅ + , we 

get F ( ) .1 1=  From 2 8 5 1 33 = = ⋅ + , we get F ( )2 3= . Similarly, 

the equations 3 5 5 2 4 12 5 43 3= ⋅ + = ⋅ +and  lead us to 

F ( )3 2=  and F ( ) .4 4=  We now can see that F is a bijection, 

and the inverse function F − →1 1 2 3 4 1 2 3 4: { , , , } { , , , } can be 

described by reversing the inputs and outputs. But this clearly 

results in the same function, that is, F F− =1 .

Substitution Ciphers
We are nicely prepared to define our first cipher, known as a substitution 
cipher. Many of us have some experience with such ciphers going back to 
our days in elementary school when we wanted to pass notes to some of 
our classmates in such a way that if the note was intercepted by the teacher 
(or another unintended student), he or she would not be able to read it.

Definition 1.3

A substitution cipher is simply a function F from a plaintext alphabet 
P to a ciphertext alphabet C, that is both one-to-one and onto. Thus, for

* The remainder when we divide a positive integer b by 5 is the unique integer r, with 
0 5≤ <r , such that b q r= +5 , for some integer q. This is just the usual remainder in long 
division that one learned in grade school; we give a much more thorough account of this 
topic in the next chapter. 

A

a

f(a) = b

f

f –1

B

Figure 1.4 Illustration of the inverse function f  –1 : B → A of a bijection f : A → B.
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every plaintext letter p P∈ , the function associates a unique ciphertext 
letter c F p C= ∈( ) , such that:

(i)  One-to-one condition. Different plaintext letters will always 
be associated with different ciphertext letters; i.e., if p p1 2≠  
(two letters in P), then F p F p( ) ( )1 2≠  (two letters in C).

(ii)  Onto condition. Every ciphertext letter is associated with a 
plaintext letter; i.e., if c C∈ , then there is an associated plain-
text letter p P∈ , with c F p= ( ).

The function F (that specifies the correspondence between plaintext 
and ciphertext letters) is called the key of the substitution cipher. More 
generally, a key in a certain cryptosystem is some parameter that is suf-
ficient to completely describe the encryption and/or decryption mapping 
of any particular instance of the cryptosystem. In some situations, as 
with a general substitution cipher, the key and the encryption and/or the 
decryption mapping are synonymous, because it is difficult to describe 
a general substitution cipher with anything less than a specification of 
the encryption mapping. Once the key is known, it is straightforward to 
encode plaintext messages, which are strings in the plaintext alphabet P, 
into ciphertext, and to decode ciphertext messages back into plaintext. 
Thus, the key should be made available only to the sender of the messages 
(who needs it in order to encrypt the plaintext message to the ciphertext 
message) and the intended recipient (who needs it to decrypt the ciphertext 
message back to its original plaintext form).

We give a simple example of a substitution cipher in which both plaintext 
and ciphertext alphabets consist of the set of 26 English letters. For added 
clarity, we will let the plaintext alphabet be the set of lowercase letters: P = 
{a, b, c, …, x, y, z}, and the ciphertext alphabet be the set of uppercase 
letters: C = {A, B, C, …, X, Y, Z}.* In cases where the plaintext and cipher-
text alphabets are (essentially) the same, a substitution cipher corresponds 
to a rearrangement (or permutation) of the letters of the alphabet. A spe-
cial case is where each letter is shifted a certain number of letters down 
the alphabet (where the ciphertext letters A, B, C, … cycle back after Z). 
Such substitution ciphers are called shift ciphers. The following example 
describes a shift cipher that was used by the Roman emperor Julius Caesar 
(100 b.c.–44 b.c.), and has come to be known as the Caesar cipher.

Example 1.4: The Caesar Cipher

Consider the substitution cipher determined by the permuta-

tion of the 26 (uppercase) letters of the alphabet obtained by 

shifting each plaintext letter three letters down in the alphabet 

* All of the ideas that we present would work equally well for larger alphabets, and in prac-
tice all contemporary encryption devices are able to deal with plaintext involving upper- 
and lowercase letters, numbers, punctuation marks, and other symbols. Most modern 
computer-based cryptosystems (that are discussed after Chapter 7 of this book) process 
plaintext and ciphertext as binary strings (sequences of zeros and ones), integers, or even 
objects in more abstract number systems. 
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(and recycling back to the beginning of the alphabet when we 

pass Z). Thus, the ciphertext letters of a, b, and c are D, E, 

and F, respectively. This entire shift permutation is shown in 

Figure 1.5.

If Caesar used this cipher to encode his famous quote:

i came, i saw, i conquered

the corresponding ciphertext would be (omitting spaces and 

commas):*

LFDPHLVDZLFRQTXHUHG

To decrypt this ciphertext, an intended recipient would simply 

need to shift each ciphertext letter backward three letters (see 

Figure 1.5). The intended recipient would be privy to the cipher, 

and so would be easily able to perform the decryption. 

Notice the key of the Caesar cipher—namely, the shift permutation 
shown in Figure 1.5—can be used to both encrypt plaintext messages into 
ciphertext and also to decrypt ciphertext messages back into plaintext. 
More generally, for any substitution cipher determined by a one-to-one 
and onto function F P C: ,→  the decryption procedure simply uses the 
inverse substitution function F C P− →1 : , a table that can be obtained by 
simply reversing the arrows of the table for F (or in Figure 1.5 by revers-
ing the arrows). Notice that the resulting inverse function of the forward 
shift by three letters is a backward shift by three letters. If we know we 
are dealing with a shift cipher, the key can be abbreviated simply by giv-
ing the number κ > 0 of letters that we shift the plaintext letters down the 
alphabet to obtain the corresponding ciphertext letters. Thus, the key for 
the Caesar (shift) cipher is κ = 3.†

* Preserving spaces, either directly or by means of an additional ciphertext character, 
would be easily detected and would render any substitution cipher much less secure since 
it would convey complete information on word lengths of the plaintext. 

† Note that when κ = 13, the shift cipher is its own inverse (i.e., it is self-decrypting). This is 
the famous “rot13” cipher that was used in the early days of the Internet. It was discovered 
in 1999 that this low-security system was actually used by a major international e-mail 
provider to store user passwords. 

a b c

A

jihgfed

J K LG IHFEDCB M

N ZYXV WUTSRQPO A CB

k r y zxwvutsqpol m n

(plaintext)

(CIPHERTEXT)

Figure 1.5 Schematic diagram of the shift permutation associated with 

the Caesar cipher. Each (lowercase) plaintext letter is simply shifted three 

letters forward in the alphabet to obtain the corresponding ciphertext.



An Overview of the Subject   11

Shift ciphers and generalizations of it are most naturally described in 
terms of modular integers and their arithmetic, and these concepts are 
developed in the next chapter. More sophisticated ciphers and the ability 
to program them for computers rely on arithmetic in other number sys-
tems such as matrices (Chapter 4), various bases (Chapter 6), finite fields 
(Chapter 10), and most recently, an interesting arithmetic involving certain 
points that lie on special curves known as elliptic curves (Chapter 12).

Before the age of computers, mechanical devices and machines were cre-
ated for the sole purpose of encrypting and decrypting messages with respect 
to particular cryptosystems. Thus, rather than simply exchanging keys for 
the cryptosystem, designated parties would all have the same cryptographic 
devices (which, of course, were kept very secure). A very simple shift cipher 
device was created by the Confederates for encryption/decryption during the 
U.S. Civil War, showing that devices such as Caesar’s cipher remained in 
serious use for nearly two millennia. A photograph of a Confederate cipher 
disk is shown in Figure 1.6.* Only five such original devices are known to 
exist today; one is on display at the NSA museum in Fort Meade, Maryland. 
Such mechanical cryptosystems reached their pinnacle with the notorious 
German Enigma machines, which were extremely sophisticated mechanical 
and electric devices. We return to this interesting era of history in Chapter 3.

Exercise for the Reader 1.2

 (a) Find the ciphertext for the plaintext message: “Meet the ice-
man at noon,” using the shift cipher with a shift of 12 letters 
down the alphabet.

 (b) The following ciphertext was encrypted using the shift cipher of 
part (a):

VQZWUZEUEMFGDZOAMF

  Find the original plaintext message.

* We kindly acknowledge the Confederate Secret Service Camp 1710 for permission to 
include this photograph (http://home.earthlink.net/~cssscv/).

Figure 1.6 A Confederate cipher disk.
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Attacks on Cryptosystems
Let us now briefly digress to the other side of the game. How would 
eavesdropper Eve be able to crack a substitution cipher? Generally, it is 
safe to assume that the intruder has some information about the type of 
cryptosystem used, for example, a substitution cipher. Depending on what 
else Eve knows, there are several different approaches. Some common 
approaches to eavesdropping, or passive attacks, in a cryptosystem are 
described in general in the following definition. We remind the reader that 
there are other ways that a cryptosystem can be compromised, for exam-
ple, by attempting to modify messages or sending an encrypted message 
pretending to be from someone else. Such an intrusion would be called an 
active attack, since it attempts to change or corrupt the data, and would 
be done by a Mallory (rather than an Eve). We address active attacks later 
in this chapter.

Definition 1.4 Types of Passive Attacks on a Cryptosystem

We differentiate the various attacks that Eve can make depending on 
what information she has about the cryptosystem.

 (a) If Eve has only a string (or strings) of ciphertext, her attack 
would be termed ciphertext only.

 (b) If Eve has both a string (or strings) of ciphertext and the cor-
responding plaintext, it is called a known plaintext attack.

 (c) In a chosen plaintext attack, Eve would have temporary 
access to the encryption system, be able to use it to encrypt 
some plaintext strings of her choice, and see the corre-
sponding ciphertext strings.

 (d) In a chosen ciphertext attack, Eve has temporary access to 
the decryption machine and could use it to decrypt some 
ciphertext strings of her choice (perhaps ones that she has 
previously intercepted). 

Example 1.5: Passive Attacks on a Substitution Cipher

We discuss how each type of passive attack could be imple-

mented on a substitution cipher.

Since substitution ciphers are monoalphabetic ciphers, mean-

ing that each plaintext character is always encrypted to the 

same ciphertext character, a chosen plaintext or a chosen 

ciphertext attack could easily reveal the whole system. For 

example, in a chosen plaintext/ciphertext attack, if we simply 

encrypted the string “abcd … xyz,” we would have the entire 

key. If the system was a forward shift cipher (and we had this 

information), we would only need to encrypt/decrypt a single 

letter—say, “a”—to determine the key. We will soon intro-

duce ciphers that are polyalphabetic, meaning that plaintext 
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characters may encrypt to different ciphertext characters at 

different instances. Such a naïve approach as above will not 

suffice for a chosen plaintext/ciphertext attack on polyalpha-

betic ciphers.

For a general substitution cipher, a known plaintext attack 

would tell Eve exactly how the letters appearing in the known 

plaintext are encrypted. If we were dealing with a shift cipher, 

then, as above, the information about a single plaintext charac-

ter would determine the entire key.

Finally, we move on to discuss ciphertext-only attacks, 

which are typically the most difficult. If it is known, however, 

that we are dealing with a shift cipher, then since there are 

only 26 keys (25 actually), the brute-force approach of sim-

ply trying each of them to decode a given ciphertext (until it 

produces something that makes sense) could easily be imple-

mented (on a computer), and this would completely determine 

the key. For a general substitution cipher, however, there are 

too many possibilities to check for a brute-force approach to 

be feasible, even using supercomputers. Indeed, to see how 

many different one-to-one and onto substitution functions 

F P C: →  there are from the 26-letter English plaintext alpha-

bet P to another set C (the ciphertext alphabet) of the same 

size, we note that there are 26 choices for F (a), and after this 

is specified—say, F (a) Q= —there will then be 25 choices for 

F(b) (that is, all ciphertext letters except Q, since it was already 

used); once one is specified, there will be 24 choices for F(c), 

and so on, until we get to F(z), when there will be only one 

remaining choice. It follows from the multiplication principle,* 

that the total number of substitution functions F P C: →  is 

26 25 24 3 2 1⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . This product is abbreviated as 26! and 

is read as “26 factorial.”† Since 26 4 0329 1026! . ... ,= ×  even 

if we had a computer that could check 1 trillion permutations 

per second, since there are “only” 3 1536 107. × , seconds in 

a year, it would require over 10 billion years—over twice the 

age of the Earth, to have this (fast) computer check through 

all permutations.

A much more effective tool in a ciphertext-only attack, or to 

use after one has already made use of a known plaintext attack 

but still has not completely determined the cipher, is statisti-
cal frequency counts. The idea of statistical frequency counting 

methods relies on the fact that some letters tend to occur more 

frequently in written English than others. Many tables have been 

* The multiplication principle is a very useful principle for counting. In its general form, 
it states that if we have a process involving a finite sequence of choices: choice #1 has k1 
possible options, choice #2 has k2 possible options, choice #3 has k3 possible options, and 
so on, then the total number of outcomes of this sequence of choices is the product of the 
numbers of options: k k k1 2 3⋅ ⋅ ⋅ .

† In general, if n is any positive integer, n! (n factorial) is defined to be the product of all 
positive integers that are less than or equal to n; i.e., n n n n! ( ) ( ) .= ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅1 2 3 2 1
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published on this; for example, Table 1.1 shows the frequencies 

that were computed by Beker and Piper [BePi-82].*

Thus, e is by far the most frequently appearing letter (nearly 

13% of all characters encountered in written English tend to 

be e’s). Although it is possible to create exceptional passages 

which violate these frequencies,† they tend to be very useful 

in ciphertext-only attacks. Thus, in a long ciphertext (from 

a substitution cipher), if a certain character appeared most 

often—or better yet, close to the 12.7% frequency of e—we 

would predict that this letter is the encryption of e. We could 

continue “guessing letters” in this fashion. Setting it up like a 

game of hangman, we could sometimes guess new letters sim-

ply by completing words. Apart from single letters, we can also 

use the fact that certain two-letter and three-letter combina-

tions occur more frequently than others. For example, the most 

common two-letter combinations are (more common items 

listed first) th, he, in, er, an, re, ed, on, es, st, en, at, and to, 

and the most common three-letter combinations are the, ing, 

and, her, ere, ent, tha, nth, and was. Larger portions of cipher-

text tend to make such statistical methods more effective. 

The first polyalphabetic ciphers were created in the 14th and 15th cen-
turies. Since cryptosystems were in constant use for military and dip-
lomatic issues, new developments were sometimes kept as carefully 
guarded secrets by the ruling governments. Scientists who worked in the 

* Of course, there will be variations in frequencies depending on the text corpus being 
examined. For example, the distributions in e-mails, brief text messages, and computer 
codes would each have distinguishing characteristics. But for most written English that is 
not completely informal, the distribution given in Table 1.1 works remarkably well. 

† In 1939 an entire novel, Gadsby, was written by Ernest Vincent Wright and did not con-
tain the letter e; it had over 50,000 words. Unfortunately, Wright died (at age 66) on the 
day his book was published, so he never saw it in print. 

TABLE 1.1 Frequencies of the Letters of the English Alphabet

Letter Probability Letter Probability

a .082 n .067

b .015 o .075

c .028 p .019

d .043 q .001

e .127 r .060

f .022 s .063

g .020 t .091

h .061 u .028

i .070 v .010

j .002 w .023

k .008 x .001

l .040 y .020

m .024 z .001
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field were, of course, made to understand that even if they were to make 
a groundbreaking discovery, they could not expect to enjoy any fame, let 
alone any public recognition for it.

The Vigenère Cipher
A prototypical story exhibiting such characteristics concerns the so-called 
Vigenère cipher. Blaise de Vigenère* (Figure 1.7) described this cipher in 
his authoritative book on cryptography, Traicté des Chiffres ou Secrètes 
Manières d’Escrire† (first published in 1586). In it he explained that in 
the development of his cipher, many of the ingredients came from promi-
nent cryptographers of the recent past; the table was invented by German 
Johannes Trithemius (1462–1516) and the keyword idea was introduced 
in a 1553 pamphlet by Italian Giovanni Battista Bellaso. Vigenère’s addi-
tional contribution to the method had to do with the way in which the key 
was implemented. Nonetheless, it was through Vigenère’s influential book 
that the method became widely known and hence attributed to him. The 
Vigenère cipher was easy to implement and many practitioners became 
confident in its security; it was used extensively up through the mid-19th 
century. In fact, it earned the name le chiffre indéchiffrable (“the unbreak-
able cipher”). It took a full three centuries for the Vigenère cipher to finally 
meet its demise. We now explain how the cipher works. In Chapter 5 we 
show its vulnerability to an ingenious ciphertext-only attack.

* Vigenère was born in the town of Saint-Pourçain, the son of a French nobleman. He 
received his primary education in Paris, after which at age 17 he began his diplomatic 
career as an assistant to the secretary of state of Francis I. His interest in cryptography 
began during some long-term diplomatic visits to Italy, beginning at age 26, where he met 
several prominent Italian cryptographers and began reading books on the subject. After 
retiring as a diplomat at age 47, he spent much of his retirement working on cryptography 
and he wrote over 20 books on the subject. 

† The title of Vigenère’s book is in old French (before the Academie Française codified 
spelling), akin to Shakespearian English. Translation: Treatise on Numerals and Secret 
Ways of Writing.

Figure 1.7 Blaise de Vigenère (1523–1596), French diplomat and 

cryptographer.
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Definition 1.5 The Vigenère Cipher

The Vigenère cipher is determined by a key that can be any string of 
letters of the English alphabet, along with the Vigenère tableau, which 
is shown in Table 1.2. To encode a plaintext message, we work our way 
from left to right. For each plaintext character, we use the correspond-
ing character of the key, and locate the key character’s row (the key 
row) of the Vigenère tableau. The corresponding ciphertext character 
will be directly below the plaintext character in this key row. If and 
when the key characters are used up, we recycle back to the start of the 
key and continue until the plaintext is encoded. 

To decode a ciphertext message, we also work from left to right 
using one key character for each ciphertext character. This time, the 
key tells us the key row in which we locate the ciphertext character, and 
the corresponding plaintext character will be the letter on the top of the 
corresponding column.

Example 1.6

 (a) Use the Vigenère cipher to encode the message “Vive la 

France,” using the keyword “money.”

 (b) Given that the Vigenère cipher of part (a) was used to 

produce the ciphertext:

NFVREAIGXFQUHMJXCGMLQ

  find the original plaintext message.

Solution: Part (a): To encode the first plaintext letter v, the key 

row would be the m-row (first letter of the key), and the corres-

ponding ciphertext character would be directly below the v-column, 

that is, H. (This process is shaded in Table  1.2.) Similarly, to 

encode the second letter i of plaintext, we look in the o-row under 

i to get W. We continue in this fashion. Note that when we get to 

the sixth plaintext character a (and again at the 11th plaintext 

character c), we would recycle back to the beginning of the key-

word (so use the m-row). The complete encryption is thus:

plaintext:  v i v e l a f r a n c e
keyword:    m o n e y m o n e y m o
ciphertext: H W I I J M T E E L O S

Notice that the repeated instances of plaintext letters v, e, 

and a encrypt to different letters; this is in sharp contrast to 

substitution ciphers!

Part (b): To decode the first ciphertext letter N, we search for 

the location of N in the m-row of Table 1.2 (m is the first letter 

of the key “money”). Since N appears in the b-column of Table 1.2, 

the first plaintext letter is b. In the same fashion since the second 

ciphertext letter F appears in the r-column of the o-row of Table 1.2, 
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the second plaintext letter is r. Continuing this process, recycling 

the keyword “money,” we arrive at the following decryption:

ciphertext: N F V R E A I G X F Q U H M J X C G M L Q
keyword: m o n e y m o n e y m o n e y m o n e y m
plaintext: b r i n g o u t t h e g u i l l o t i n e

Exercise 1.3
 (a) Use the Vigenère cipher to encode the message “Code blue 

alert,” using the keyword “dijon.”

 (b) Given that the Vigenère cipher of part (a) was used to produce 
the ciphertext:

EZNOXRCCOGPQMBVJPC

  find the original plaintext message.

Exercise 1.4
 (a) Explain how the decryption of a Vigenère cipher can be realized 

as an encryption of a Vigenère cipher with another keyword.

 (b) Find the keyword for the Vigenère cipher corresponding to the 
decryption process of the Vigenère cipher of Example 1.6.

The Playfair Cipher
Our next example is the first historically documented example of what is 
known as a block cipher. In a block cipher, letters are grouped into same-
sized blocks, and these plaintext blocks are processed together to form the 
corresponding blocks of ciphertext in a way that changing a single letter 
in a plaintext block can potentially change other letters in the correspond-
ing ciphertext block. It was created in the mid-19th century by the British 
scientist Sir Charles Wheatstone. It is known as the Playfair cipher, after 
Baron Lyon Playfair, who helped to promote its use by the British gov-
ernment in its South African (Boer) wars. It continued to be used by the 
British military through World War I.*

* Sir Charles Wheatstone (1802–1875) was a British scientist and prolific inventor most 
famous for developing the Wheatstone bridge, a device for measuring resistances in elec-
tric circuits. He also invented a telegraph before Samuel Morse—an achievement for 
which he was knighted; a musical instrument (the concertina); and a three-dimensional 
image display device (the stereoscope). Cryptography was one of his hobbies that he 
shared with his friend Baron Lyon Playfair (1818–1898), who lived across London’s 
Hammersmith Bridge. They took Sunday walks together where they worked on cracking 
codes. Their dispositions were quite different. Wheatstone was so extremely shy that, 
although appointed as a professor, he rarely gave public lectures. In contrast, Playfair, 
also a scientist, was a public figure who served in an assortment of official roles includ-
ing as Speaker in the House of Commons and as president of the British Association of 
Advancement of Science. He had direct access to many policymakers and was able to 
convince them to adopt the Playfair cipher. 
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Definition 1.6 The Playfair Cipher

We start with a key, which can be any word. To illustrate, we use “bas-
ketball” for the key. Repeated letters of the key are removed; in our 
example, we get “basketl.” The letters of the reduced word are then 
deployed into a 5 5×  array (starting from the upper left and proceeding 
in reading order), and the remaining spaces of the array are filled with 
the remaining letters of the alphabet, except that i and j are treated as a 
single letter. In our example the array would be:

b a s k e
t l c d f
g h ij m n
o p q r u
v w x y z

Encryption scheme: Given a plaintext message, for example,

the iceman will arrive at midnight

we group the letters into adjacent pairs, but if any pair has the same two 
letters, we insert an x between them and regroup.

th ei ce ma nw il la rx ri ve at mi dn ig ht

In case there is an odd number of letters, we would append an addi-
tional x at the end to complete the last pair.

Each pair of letters is encrypted using the above 5 5×  array depend-
ing on which of the following three cases is applicable:*

Case 1. The two letters are not in the same row or column of the 
array. In this case, we replace each letter with the letter in its 
row that is in the column of the other letter. In our example, 
the first pair th falls into this case, so t gets replaced by l, and 
h gets replaced by g, so the pair gets encrypted as lg.

Case 2. The two letters are in the same row. In this case, we replace 
each letter with the letter to its immediate right, cycling back 
to the beginning of the row if the letter is all the way on the 
right. In our example, the pair ig falls in this case, so it gets 
encrypted as mh.

Case 3. The two letters are in the same column. In this case, 
we replace each letter with the letter immediately below it, 
cycling back to the top of the column if the letter is all the way 
at the bottom. In our example, the pair la falls in this case, so 
it gets encrypted as hl.

* As in the Vigenère cipher, rows are horizontal segments of the table, and columns are 
vertical segments. 
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Continuing with the remaining pairs, we obtain the sequence:

lg sn fs hk hz hc hl qy qm z bbl nm fm mh gl

and thus the ciphertext is

LGSNFSHKHZHCHLQYQMZBBLNMFMMHGL

The decryption process is accomplished by reversing the above pro-
cess. First go through the pairs of letters according to their cases (in 
cases 2 and 3, the replacements are done with the letters immediately 
to the left or above), then remove any redundant x’s to recover the origi-
nal message. 

Exercise for the Reader 1.5

 (a) The Playfair cipher is used with keyword “barcelona” to encrypt 
the message “Meet agent Yullov at the Auberge Restaurant.” 
Find the ciphertext.

 (b) The Playfair cipher of part (a) was used to produce the follow-
ing ciphertext:

 MAXHNVGLBERCCXSIHBXSGBBCACMRDERQRZ

  Decode this message.

Although it is more secure than substitution ciphers, the Playfair cipher is 
susceptible to ciphertext-only attacks by doing statistical frequency counts 
of pairs of letters, since any pair of letters will always get encrypted in the 
same fashion. But since there are 26 6762 =  such ordered pairs of letters and 
the distinctions are less pronounced than those for single-letter statistics, a 
ciphertext-only attack would typically require significantly larger portions 
of ciphertext. Also, short keywords make the Playfair cipher much easier 
to crack (since the portion of the array after the keyword is much more 
predictable). For more details on the cryptanalysis of the Playfair cipher, the 
interested reader may consult [Gai-89]. More sophisticated block ciphers 
are often naturally developed in terms of matrices, and Chapter 4 presents 
all of the properties about matrices that we will need.

The 20th century saw a proliferation of ever more sophisticated block 
cryptosystems that required special mechanical and/or electric devices 
to use. These systems continued to evolve into the computer age. In 
Chapter 7 we develop the Data Encryption Standard (DES), which was 
a system adopted in 1977 by the U.S. government to address the growing 
cryptographic needs of business and industry. The encryption process of 
DES involved 16 complicated rounds of processing blocks consisting of 
binary strings (zeros and ones) of size 64. The details are quite compli-
cated, involving various substitutions, permutations, and some other func-
tions that we will explain later. This is a “computer-only” system that is 
unfeasible for hand calculations. The DES system has a high degree of 
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entropy, meaning that minor changes in the plaintext can produce radi-
cally different ciphertexts. The system was in widespread worldwide use 
for nearly 30 years. With increasing computer speeds and new cryptanaly-
sis methods being developed, it started to become apparent that a more 
secure system was required, and this led to the Advanced Encryption 
Standard (AES) system in 2002. Whereas the DES, although quite com-
plicated, relied on rather basic mathematical functions and operations, 
the AES is based on arithmetic in an abstract number system called a 
finite field. We discuss finite fields in Chapter 10 and develop the AES in 
Chapter 11.

All of the cryptosystems described above and all of the other ones that 
we did not mention dating before the 1970s shared the common disadvan-
tage that they are so-called symmetric key (or private key) cryptosystems. 
This simply means that the decryption key and process are essentially the 
same as the encryption key process (perhaps with certain elements of the 
process being reversed). The ramification is that the key must be provided 
to both the sender and recipient so that secure communication can take 
place, and of course, the keys must be kept out of reach from any antici-
pated hackers.

Most experts had believed that there was no way around this sym-
metric key concept; in other words, if one knows the encryption scheme, 
then one should be able to figure out how to reverse the process and thus 
be able to decrypt any message sent under the same cryptosystem. One of 
the main drawbacks of all symmetric key cryptosystems is the fact that 
in order for such a system to be employed, the keys must be distributed 
to all participating parties before any secure communication can take 
place. This task by itself is often difficult or impractical. Such drawbacks 
can now be circumvented thanks to a remarkable revolution in cryptog-
raphy known as public key cryptography or asymmetric key cryptog-
raphy that occurred in the 1970s. The discovery was first published in 
a groundbreaking 1976 paper by American cryptographers Whit Diffie 
and Martin Hellman [DiHe-76].* Although Diffie and Hellman did not 
provide a complete practical implementation of a public key crypto-
system, they provided an important key exchange protocol (the Diffie–
Hellman key exchange) by which two remote parties could establish 
a secure key using public (insecure) channels. Inspired by the Diffie–
Hellman paper and the need for a practical cryptosystem implementation 

* Merkle and Hellman later collaborated to develop one of the first public key cryptosys-
tems; it is discussed, with others, in Chapter 10. Bailey Whitfield (Whit) Diffie went 
straight from earning his B.S. degree (1965) in mathematics at MIT to a job at the MITRE 
Corporation, where he became very interested in cryptography. This interest motivated 
him to accept a position four years later at Stanford’s artificial intelligence laboratory. 
Martin E. Hellman earned his B.S., M.S., and Ph.D. degrees in electrical engineering 
from New York University. After completing postdoctoral positions at IBM and MIT, he 
moved on to take an academic position at Stanford in 1971, where he met Diffie. Both 
received numerous accolades for their pioneering work, including an honorary doctorate 
for Diffie from the Swiss Federal Institute of Technology. Hellman remained at Stanford 
until his retirement, where he had an illustrious career with continuous strong research 
activity and as an award-winning teacher. Diffie worked for most of the rest of his career 
in industry and currently serves as a vice president and chief security officer at Sun 
Microsystems. 
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of their concept, MIT scientists Ronald Rivest, Adi Shamir, and Leonard 
Adleman invented their RSA cryptosystem* in 1978. This has turned 
out to be one of the most important and widely used public key cryp-
tosystems, and for their ingenious achievement, the three were awarded 
the Turing Award in 2002. The Turing Award is often referred to as the 
Nobel Prize in computer science.

The concept of public key cryptography had actually been discovered 
by British cryptographer James Ellis (Figure 1.9)† in the late 1960s, and the 

* It was in their RSA paper [RiShAd-78] that the characters “Alice” and “Bob” were intro-
duced as permanent fixtures in the cryptography saga.

† James Ellis was born in Britain and studied physics at Imperial College in London. After 
college, his first job was with the Post Office Research Station (which had an active cryp-
tography team), and he was subsequently recruited in 1952 by the GCHQ (which had 
previously been Bletchley Park). His discovery of public key cryptography was made in 
the late 1960s, apparently motivated by his reading of a World War II-era paper on the 
concepts of adding/subtracting random noise to encrypt voice communications. Ellis did 
not have a sufficient mathematical background to adapt his concept into a practical algo-
rithm. Clifford Cocks had a very strong mathematical background to nicely complement 
Ellis’s strengths. He won the silver medal at the International Mathematical Olympiad 
as a high school student and went on to study mathematics at Cambridge, and then to do 
graduate work in number theory at Oxford. As a graduate student, he was recruited by 
GCHQ in 1973, and after learning of Ellis’s public key discovery, he invented, in his first 
year at GCHQ, the public key cryptosystem that was later known as RSA. It was not until 
1997 that the GCHQ allowed information about these discoveries to be made public. This 
dissemination was made through a public lecture by Cocks in that same year. The timing 
was unfortunate, since Ellis had passed away one month before this talk. 

Figure 1.8 American cryptographers Martin Hellman (1945– ) (middle), 

and Whit Diffie (1944– ) (right), pictured with Ralph Merkle (1952– ). With 

permission of Chuck Painter/Stanford News Service.
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RSA implementation of it by Clifford Cocks (Figure 1.10) in 1973, while 
they were employed at the Government Communications Headquarters 
(GCHQ), the British analogue of the United States’ NSA. The latter scien-
tists did not receive any recognition for their discoveries until 1997, when 
the British government decided to declassify the information. Such stories 
are typical of many of the unsung heroes of cutting-edge cryptography, 
who often are required (by their governments) to keep a tight lid on their 
discoveries as matters of national security.

We will enter into the technical details of public key cryptography in 
Chapter 9, but it will be helpful to first give a superficial overview: Each com-
municating party (or individual) has two keys, a public key and a private 
key. Unlike with symmetric key cryptography, it is not feasible to obtain the 
private key from knowledge of the public key. The directory of public keys 
is made available to the general public (including Eve and Mallory), while 
all parties keep their private keys only to themselves. When Alice sends 
a message to Bob, she encrypts the message using Bob’s public key. Only 
Bob, who has the corresponding private key, will be able to decrypt Alice’s 
message. Apart from removing the prerequisite key distribution issue, 

Figure 1.9 James H. Ellis (1924–1997), British cryptographer.

Figure 1.10 Clifford C. Cocks (1950– ), British cryptographer.



24   Introduction to Cryptography

public key cryptography also greatly reduces the number of keys needed. 
For example, if we had a network of one million parties, with a symmetric 
key cryptosystem, each pair would need a separate key exchanged before 
communications could take place. This would amount to half a trillion keys, 
all of which need to be securely transmitted—this is a logistical nightmare. 
A public key system, on the other hand, would require only two million 
keys, none of which would need to be securely transmitted.

Basically, public key cryptography translates the difficulty of cracking 
into the system (by determining a private key from public key registries) into 
the difficulty of solving certain notoriously difficult mathematical problems, 
whose “inverse” problems are much easier to solve. For example, the RSA 
system, to be discussed in Chapter 9, is based on the difficulty of factoring 
large positive integers. The inverse problem is simply multiplying large posi-
tive integers, which has always been easy. We will learn much more about 
prime numbers and the associated number theory in Chapter 8, which also 
addresses the important practical problem of generating large prime num-
bers (since they are needed for many public key cryptosystems). Encryption 
is based on the easier inverse problem, whereas unauthorized decryption 
would be based on the computationally infeasible problem. Using such prob-
lems that have been well known and actively researched for a long time adds 
to the confidence of the security of such a system. Any of these public key 
systems are subject to faltering upon any new discovery of efficient algo-
rithms for the intractable problems on which they are based. Although it has 
not been proved, for example, that an efficient algorithm for prime factoriza-
tion cannot exist, it is the general consensus that this is the case. Other public 
key cryptosystems are based on a very special class of intractible problems 
known as NP complete problems.* We will introduce knapsack cryptosys-
tems, which are based on the NP complete knapsack problem. It is interest-
ing to point out that because of the increased importance that such problems 
now have due to the widespread use of cryptosystems that are based on them, 
the NSA strictly regulates certain areas of research relating to such problems. 
American scientists who make any novel discoveries in areas relating to pub-
lic key cryptography need to clear them with the NSA before announcing 
them to the public (or publishing).

Several other public key cryptosystems are developed in Chapter 9. In addi-
tion to the confidentiality that is provided by symmetric key cryptosystems, 
public key cryptosystems all provide the following additional features:

* There are a very large number of computational problems where there is an “efficient” way 
to check whether a proposed answer is correct, in that it can be done in an amount of time 
that is bounded by a power of the input size (this is called “in polynomial time”) but where 
no known algorithm has been designed to find the solution that will also work in polynomial 
time. A prototypical example is the prime factorization problem. It has been established 
that there is a plethora of such problems that are seemingly unrelated but if a polynomial 
time algorithm is discovered for one of them, then polynomial time algorithms can be pro-
duced for all of them! This latter class of problems is known as the NP complete problems, 
whereas problems that can be solved in polynomial time are called P problems. Most sci-
entists believe that NP P≠ ,  but the conjecture remains one of the most famous unsolved 
problems in mathematics and computer science. For more details on the P = NP problem, the 
interested reader is referred to the classic but authoritative reference by Garey and Johnson 
[GaJo-79]. Resolving this problem is one of the seven millennium problems for which the 
Clay Foundation (http://www.claymath.org/millennium/) is offering $1 million prizes.
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• Authentication: The intended recipient of a message will be able 
to verify that it came from the indicated sender.

• Nonrepudiation: The sender of a message will not be able to 
deny that he or she was the sender.

These can be achieved by so-called digital signature schemes. Digital 
signatures, unlike ordinary signatures, are unique for each sender and 
cannot be forged.

With all of the added advantages and high security of public key 
cryptosystems, a natural question thus arises: Why even bother anymore 
with symmetric key cryptosystems? The answer is that symmetric key 
cryptosystems are significantly faster and more efficient than public key 
cryptosystems. Thus both types of cryptosystems can continue to live a 
productive coexistence: public key cryptosystems can be used to securely 
exchange private keys, after which the faster private key cryptosystems 
can be used.

In the mid-1980s, a new sort of public key cryptosystem was developed 
using a geometrically motivated (but analytically complicated) arithmetic 
of points with integer coordinates on certain planar curves known as ellip-
tic curves. In spite of their name, these curves are not ellipses but a more 
diverse family of unbounded curves. The key sizes required for a given 
elliptic curve cryptosystem are significantly smaller than what would be 
required for other typically known public key cryptosystems with the same 
degree of security, and this fact has made elliptic curve cryptography one 
of the most promising and extensively studied branches of cryptography. 
Elliptic curve cryptography will be studied in Chapter 12.

The One-Time Pad, Perfect Secrecy
Circumstances and needs, as well as advances in technology, fuel the 
constant efforts to design (and attempts to crack) evermore sophisticated 
cryptosystems. The eminent scientist Claude Shannon* (Figure  1.11) 
wrote a number of seminal papers on cryptography in which he gave two 
important properties that cryptosystems should possess to avoid being 
compromised: diffusion and confusion. Diffusion means that changing 
just a single character in the plaintext should diffuse (spread out) to affect 
changes in several ciphertext letters (the more the better). Confusion means 

* Claude Shannon grew up in Michigan. He earned a bachelor’s degree with a double major 
in mathematics and electrical engineering from the University of Michigan–Ann Arbor. 
His landmark discovery of an effective symbolism for electric circuits actually came from 
his master’s thesis at MIT: A Symbolic Analysis of Relay and Switching Circuits. This 
thesis has had a tremendous impact on industry by changing circuit design from an art to 
a science. Shannon went on to earn a doctorate at MIT and continued to make valuable 
contributions to the electronics and communications fields during his career working at 
Bell Labs, where his laboratory office ceiling was adorned with a rainbow of gowns from 
honorary doctorates that he had received. He developed a secure cryptosystem that was 
used by Roosevelt and Churchill for transoceanic communications during World War II. 
His work in this area motivated the development of the field of coding theory, for which he 
is considered the founder. Coding theory studies what are called error-correcting codes, 
which are used in everything from CDs to routine data transmissions. We have Shannon to 
thank, for example, when a scratched music CD will still play perfectly well. 
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that there should be no simple relationship between a cryptosystem’s key 
and instances of its ciphertext. For example, any substitution cipher does 
not exhibit diffusion since changes in a single plaintext letter will affect 
only the corresponding ciphertext letter. Block ciphers are conceived to 
have good diffusion.

Another important contribution of Shannon was the concept of perfect 
secrecy that he introduced in 1949. This concept rigorously defines what 
it means for a cryptosystem to be “unbreakable,” in the sense that see-
ing the ciphertext of any plaintext message (in a ciphertext-only attack) 
gives the hacker absolutely no information about the plaintext. There is 
actually a rather simple cryptosystem that exhibits perfect secrecy: the 
Vigenère cipher with a randomly generated key that is the same length as 
the plaintext; it is called a one-time pad. This cryptosystem is sometimes 
also called the Vernam cipher, after its inventor, Gilbert S. Vernam, a 
cryptographer with AT&T. It is not very practical to use because of the 
large keys, and the fact that once a key is used it must be thrown out. 
Although it had been conjectured for several decades that the one-time 
pad was perfectly secure, Shannon was the first to provide a rigorous 
proof. One-time pads have since been used for some of the most sensitive 
communication purposes; for example, Figure 1.12 shows a one-time pad 
system at the U.S. end of the Moscow–Washington hotline, in use during 
the Cold War era.

The next example shows how the one-time pad works.

Example 1.7: The One-Time Pad

The concept of a one-time pad involves randomness. By its very 

nature, any random process is unpredictable and this will be 

the key element that results in the system’s being perfectly 

secure. There are 26 different shift operators, corresponding to 

the keys κ = 0 1 2 3 25, , , , , . The key for a one-time pad needs to 

Figure 1.11 Claude E. Shannon (1916–2001), American applied 

mathematician.



An Overview of the Subject   27

consist of a sequence of shift keys that are randomly selected 

from the list of 26 possible keys. Each key corresponds to how 

many letters down the alphabet the plaintext letter a (and hence 

all plaintext letters) gets shifted, see Table 1.3.

Suppose that we need to send a message that contains N 

characters. The one-time pad would require a key of length at 

least N. To produce the key, imagine that we label 26 identical 

balls with the possible key numbers 0–25 and place them in an 

urn; see Figure 1.13.

We shuffle the balls, randomly draw one ball, record its num-

ber, then replace it in the urn and reshuffle. We repeat this pro-

cess N times to produce the one-time pad key. Although it seems 

contradictory, computer algorithms (which are programmed to 

follow a fixed set of instructions) have been designed to pro-

duce so-called pseudorandom numbers, which, for all practical 

purposes, can be assumed random.* The computer implemen-

tations given at the end of this chapter provide some schemes 

for producing such random numbers. For example, suppose 

that we needed to create a one-time pad cipher with keylength 

* Of course, any computer algorithm runs on a specified set of instructions, so technically 
such a program cannot produce truly random numbers. Nonetheless, effective algorithms 
can be created that produce streams of numbers that satisfy all of the important statistical 
tests for randomness. Moreover, the programs can call on the computer clock to produce 
the “seed” of the generator so the algorithm will produce different streams at each call. 
For more details on such pseudorandom number generator algorithms, we refer the reader 
to Chapter 2 of [LePa-06] or Chapter 3 of [Knu-98].

Figure 1.12 Photograph of the one-time pad machines (black) in use by the 

U.S. Signal Corps to support the Washington–Moscow hotline. The white 

machines were used to print and read plaintext messages. Photograph 

courtesy of the United States National Archives.
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N = 15. Resorting to a random number generator, we obtained 

the following sequence that we will use as the key for the one-

time pad:

κ = [21 23 4 23 16 3 7 14 24 25 4 25 9 13 21]

By consulting Table  1.3, we see that the resulting one-

time pad will simply be the Vigenère cipher with keyword: 

vxexqdhoyzezjnv. Notice that we used lowercase letters although 

Table 1.3 had uppercase letters (Why?). 

Chapter 1 Exercises

 1. For the three diagrams shown below, indicate which specify 
functions. For each function, identify its domain, codomain, 
and range, and determine whether it is (a) one-to-one, (b) 
onto, or (c) bijective.
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 2. For these three diagrams, indicate which specify func-
tions. For each function, identify its domain, codomain, and 
range, and determine whether it is (a) one-to-one, (b) onto, or 
(c) bijective.

Figure 1.13 An urn containing 25 balls of identical size, weight, and texture 

can be used for the purpose of random number generation.
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 3. Consider the function f : {a, b, c, y} → {length 2 binary strings} 
defined by f(a) = 00, f(b) = 01, f(c) = 10, f(y) = 11.

 (a) Is f one-to-one?
 (b) Is f onto? 
 (c) Determine the binary string f(a) f(b) f(b) f(y). 
 (d) Suppose that the binary string 1000010111 was produced 

by concatenating the outputs of f under a corresponding 
string of input values. Determine the input string.

 4. Consider the function G : {a, b, e, f, l, t, y} → {length 3 binary 
strings} defined by G(a) = 000, G(b) = 001, G(e) = 010, G(f) = 
011, G(l) = 100, G(t) = 101, G(y) = 110.

 (a) Is G one-to-one?
 (b) Is G onto?
 (c) Determine the binary string G(b) G(e) G(l) G(t). 
 (d) Suppose that the binary string 100000101010 was produced 

by concatenating the outputs of G under a corresponding 
string of input values. Determine the input string.

 5. (a)  Suppose that f A B: →  is a function, where A and B are 
finite sets, and that A has more elements than B. Does f 
necessarily have to be onto? Can f ever be one-to-one? 
Explain.

  (b)  Suppose that f A B: →  is a function, where A and B are 
finite sets, and that B has more elements than A. Does f 
necessarily have to be one-to-one? Can f ever be onto? 
Explain.

 6. (a)  Suppose that f A B: →  is a one-to-one function, where A 
and B are finite sets, each containing the same number of 
elements. Explain why f is necessarily bijection.

  (b)  Suppose that f A B: →  is an onto function, where A and 
B are finite sets, each containing the same number of ele-
ments. Explain why f is necessarily bijection.

 7. Provide an example of a function from the positive integers 

{1, 2, 3, } to {1, 2, 3, } that is:
 (a) Neither one-to-one nor onto.
 (b) One-to-one, but not onto.
 (c) Onto, but not one-to-one.
 (d) A bijection f such that f a a( ) ,≠  for each positive integer a.

 8. Provide an example of a function from the set {finite length 
binary strings} to the set {finite length binary strings} that is:

 (a) Neither one-to-one nor onto.
 (b) One-to-one, but not onto.
 (c) Onto, but not one-to-one.
 (d) A bijection f such that f ( ) ,σ σ≠  for finite length binary 

string σ .
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 9. Consider the suffix function G: {finite length binary strings} 

→ {finite length binary strings} defined by G( )σ σ= ⋅1; i.e., 

G( )σ  is the concatenation of σ  with the length 1 string “1.” For 
example, G(1010) = 10101. (In other words, G tacks a suffix “1” 
onto every string.)

 (a) Is G one-to-one?
 (b) Is G onto?
 (c) In case G is a bijection, determine the inverse function.

 10. Consider the reversal function H: {finite length binary strings} 
→ {finite length binary strings} defined by =−H b b b b( )n n1 2 1  
b b b bn n 1 2 1− ; i.e., the output of any binary string (under H) is 
the string of the same length, but with the bits given in the 
opposite order. For example, H(1010) = 0101.

 (a) Is H one-to-one?
 (b) Is H onto?
 (c) In case H is a bijection, determine the inverse function.

 11. Consider the function f  : {length 8 binary strings} → {length 8 
binary strings} defined by f(b1b2b3b4b5b6b7b8) = b2b4b6b8b1 b3b5b*, 
where b* = 1 if b b b6 7 8+ + is an even number; otherwise, b* = 0. 
For example, f(11110000) = 11001101.

 (a) Is f one-to-one?
 (b) Is f onto?
 (c) In case f is a bijection, determine the inverse function.

 12. Consider the function g: {length 4 binary strings} → {length 4 
binary strings} defined by g(b1b2b3b4) = c1c2b1b4, where c1 1=
if b b1 2+ is an even number; otherwise, c1 0= , and while c2 1=
if b b2 4+ is an even number; otherwise, c2 0= . For example, 
g(1111) = 0011.

 (a) Is g one-to-one?
 (b) Is g onto?
 (c) In case g is a bijection, determine the inverse function.

 13. (a)  Use the Caesar cipher to encrypt the following strings of 
plaintext:

 (i) the shipment will arrive at noon
 (ii) lay low until friday
 (iii) always use the back door
 (iv) the phone is bugged
  (b)  Decrypt each of the following ciphertexts that came from 

the Caesar cipher:
 (i) EULQJWKHLWHPWRMHQNLQV
 (ii) VHQGDJHQWSRONDVLJQDO
 (iii) LQWHUFHSWWKHLUFDVHZRUNHU
 (iv) FKHFNLQWRWKHKRWHO

 14. (a)  Use the Caesar cipher to encrypt the following strings of 
plaintext:

 (i) two minutes until alarm sounds
 (ii) spread out your team
 (iii) reconnaissance is on schedule
 (iv) this hotel is safe
  (b)  Decrypt each of the following ciphertexts that came from 

the Caesar cipher:
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 (i) OHDYHPRQHBLQVZLVVDFFRXQW
 (ii) VWDOOWKHPIRUWKUHHKRXUV
 (iii) GRQWOHDYHZLWKRXWDJHQWGXFKRYVNL
 (iv) ERRNDIOLJKWWRSUDJXHXQGHUDOLDV

 15. (a)  Use the shift cipher with key κ = 22 (i.e., encryption is 
accomplished by shifting 22 letters down the alphabet) 
to encrypt each of the strings of plaintext of Exercise 13, 
part (a).

  (b)  Decrypt each of the following ciphertexts that came from 
the shift cipher with key κ = 18: 

 (i) OSALAFYXGJAFKLJMULAGFK
 (ii) KMTBWULZSKTGSJVWVHDSFW
 (iii) ESCWAFALASDUGFLSULSKSTMKAFWKKESF
 (iv) GHWJSLAGFZSKTWWFUGEHJGEARWV

 16. (a)  Use the shift cipher with key κ = 6 (i.e., encryption is 
accomplished by shifting six letters down the alphabet) 
to encrypt each of the strings of plaintext of Exercise 14, 
part (a).

  (b)  Decrypt each of the following ciphertexts that came from 
the shift cipher with key κ = 1.

 (i) SFUVSOUPGJFMEPGGJDFOPX
 (ii) BTTFNCMFZPVSTUSJLFUJNFCZNJEOJHIU
 (iii) TFOEGPSBEEJUJPOBMBHFOUT
 (iv) JOGPSNBMMMPDBMDBTFXPSLFSTPGUIFQMBO

 17. (a)  Use the Vigenère cipher with key rocket to encrypt each 
of the strings of plaintext of Exercise 13, part (a).

  (b)  Decrypt each of the following ciphertexts that came from 
the Vigenère cipher with key bluefog:

 (i) ILLVJZRXTFPGSCBTNMSULPCSSZ
 (ii) USYQJHZJYAANHNXLNWTBOTLMIYIV
 (iii) DZGIFZUOPVYYPXJYACTIXQTYGJ
 (iv) SPHXFFUPXCRYVKIZNIQAGSTARTBOOEBIK
  WLUSUVWCTETMIRSTU

 18. (a)  Use the Vigenère cipher with key mole to encrypt each of 
the strings of plaintext of Exercise 14, part (a).

  (b)  Decrypt each of the following ciphertexts that came from 
the Vigenère cipher with key timbucktu:

 (i) VWPFABXYG
 (ii) TTXTSCMYFAMSYEIUGLDFUNRNHZGO
 (iii) UZUOAIHOKVUHBDOCLQAOAYZAEME
 (iv) RWGSUVBULXMTMZHLMQEXUSMCGORPLIHO

 19. (a)  Use the Playfair cipher with key diskjockey to encrypt 
each of the strings of plaintext of Exercise 13, part (a).

  (b)  Decrypt each of the following ciphertexts that came from 
the Playfair cipher of part (a):

 (i) RBIABDIGTPSZ
 (ii) QMBGDTYASKCZXKPKCIDUICTPYBQM
 (iii) REBSLUMNGYXYNBLFCR
 (iv) QTBPCPSCDZLXYBQTDMYIKDTKUFGEQD
  SIYEITBQGYGDGAKW
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 20. (a)  Use the Playfair cipher with key crimson to encrypt 
each of the strings of plaintext of Exercise 14, part (a).

  (b)  Decrypt each of the following ciphertexts that came from 
the Playfair cipher of part (a):

 (i) KFMCVFNIRAQGCFASOIEFQY
 (ii) EFFLDINGKOMCQBORGV
 (iii) YTFCGCIDIOCHINRAYTFCKCPMAVBC
 (iv) OHXNCFNERDRQFCCDBPKFIOYTKOIN
  PCAVNELBQW

 21. Explain how a known plaintext attack on the Vigenère cipher 
would work. How much plaintext would be required for the 
attack to work?

 22. (a)  Explain how a chosen plaintext attack on the Vigenère 
cipher would work. How much plaintext would be required 
for the attack to work?

  (b)  Explain how a chosen ciphertext attack on the Vigenère 
cipher would work. How much ciphertext would be 
required for the attack to work?

ADFGVX Cipher

A cipher that is similar to the Playfair cipher, known as the ADFGVX cipher, 
was used by the Germans during the First World War. The ciphertexts involve 
only these six letters, which were chosen because of their easy distinctions in 
Morse code (which through telegraphs and radio was the primary means of 
military communications). We explain how this cipher works through a spe-
cific example. First, the method begins by randomly arranging the 26 letters 
of the alphabet along with the 10 digits into a 6 6×  array with the rows and 
columns labeled with the letters ADFGVX. Table 1.4 shows such a table.

Encryption: Suppose that we are given a plaintext, such as “Ambush 
at the Rhein.”

Step 1. Replace each plaintext letter with the pair of letters in the 
ADFGVX table (Table 1.4) that label the plaintext letter’s row and col-
umn. So a is replaced by DV, t by DD, and so on.

plaintext: a m b u s h a t t h e r h e i n

Step 1: DV GX FF GD VD DX DV DD DD DX XD VV DX XD VG AX

At this point, we have a substitution cipher, which at the time of the 
First World War would have certainly been long-outdated technology and 

TABLE 1.4 ADFGVX Table

A D F G V X

A 8 p 3 d 1 n

D 1 t 4 o a h

F 7 k b c 5 z

G j u 6 w g m

V x s v i r 2

X 9 e y 0 f q
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easily hacked. The second and final step makes the plaintext much more 
difficult to hack.

Step 2. This part, which depends on a keyword, will permute the output 
string of Step 1. In this example, we use the keyword MAGIC. We cre-
ate a new table with columns labeled by the keyword, and fill in the cells 
below it in reading order, row, by row. After this is done, we rearrange the 
columns of this table, so the keyword letters are in alphabetical order. The 
ciphertext is obtained by taking the letters of each column, from top to 
bottom, and taking the alphabetized columns in order.

`

M A G I C

D V G X F

F G D V D

D X D V D

D D D D X

X D V V D

X X D V G

A X    

A C G I M

V F G X D

G D D V F

X D D V D

D X D D D

D D V V X

X G D V X

X    A

Reading down the columns of the second (column permuted table) 
gives us the ciphertext:

Ciphertext: VGXDDXXFDDXDGGDDDVDXVVDVVDFDDXXA

Decryption is performed by reversing the encryption process. Note that 
in addition to the keyword, the ADFGVX table (Table 1.4) is also part 
of the key, since it depends on how the letters and digits were randomly 
deployed in the 36 cells.

Historical Aside: By the time of the First World War, the French had 
assembled a very strong cryptography team, after having suffered an embar-
rassing defeat where they had lost the provinces of Alsace and Lorraine in the 
Franco-Prussian War of 1870. This defeat would most probably have been 
avoided if the French had better intelligence. Soon after the Germans began 
confidently using the ADFGVX cipher in 1918, as they were making plans to 
take over Paris, the French put their most prized cryptographer, Lieutenant 
Georges Painvin (Figure 1.14), to work on decrypting this new cipher. Painvin 

Figure 1.14 Georges Painvin (1886–1980), French cryptographer.
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worked day and night to crack it and was able to succeed with three months 
of hard work. His efforts were so consuming, though, that they affected his 
health; he lost 30 pounds in the process. Readers interested in learning more 
details about Painvin’s ingenious attack may refer to [Kah-96].

 23. (a)  Use the ADFGVX cipher with key PARIS to encrypt each 
of the strings of plaintext of Exercise 13, part (a).

  (b)  Decrypt each of the following ciphertexts that came from 
the ADFGVX cipher of part (a):

 (i) VVVDXDVDDXVDDD
 (ii) XXDDGADAXVVXGGXVXXGVXGXGVGGD
  DXDAGDGDDADAXAGAVAFVXVGVDXGDXA
 (iii) DVDGVGDGDFDDVDFVVXGVGDVDGDX
  VGDXVDDGDVD
 (iv) XFDDDDAXDDGXXDVVVFDDADXXDGD
  VADVDVXAVAAXXDGFDXDAGAFDGD
  DDDVGDFDG

 24. (a)  Use the ADFGVX cipher with key CRIMSON to encrypt 
each of the strings of plaintext of Exercise 14, part (a).

  (b)  Decrypt each of the following ciphertexts that came from 
the ADFGVX cipher of part (a):

 (i) DVDDAAXDVGFGDDDXGFXFVVADVXVGFA
 (ii) VVADXDDGXGDDDDVGDADDXXVDGX
  VGVDXVXXGXXVVXVDVGGGXDVDDA
 (iii) DXGDXVDDVVXVGXXGVVGXFDFXGDGD
  FVDDFDDDAFAGXXGFVD
 (iv) DFAVVXDADVDDDDVVDGXXXDDVD
  DXXDDXVDVADDDDDDGDGXDGXDAXVD
  DDVDAXADDVDXDAD

 25. Do identical adjacent pairs of plaintext typically encode to the 
same four-letter ciphertext strings under the ADFGVX cipher? 
Explain your answer.

 26. Are there any problems with procedure and/or loss of security 
with the ADFGVX cipher if one were to use a keyword with 
duplicated letters (such as LONDON)? Explain your answer.

 27. (a)  Do we gain any new ciphers by allowing the shift ciphers to 
shift to the left (rather than just to the right)? Explain your 
answer.

  (b)  Do we gain any new ciphers by allowing the shift ciphers 
to shift more than 25 letters to the right? Explain.

 28. Suppose that we construct a cryptosystem consisting of a 
Vigenère cipher, followed by another Vigenère cipher, where 
the keywords of each have the same length. Explain how much 
additional security, if any, such a system would provide over a 
single Vigenère cipher.

 29. Suppose that n > m are positive integers. Discuss the differ-
ences in security of the following two cryptosystems:

 (i) Use a Vigenère cipher with a keyword of length nm.
 (ii)  Use a Vigenère cipher with a keyword of length n followed 

by another Vigenère cipher of keyword length m.
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 30. (a) List all binary strings of length 0, 1, 2, and 3.
  (b)  Use the multiplication principle to compute the number of 

binary strings of length n, where n is any positive integer.
  (c)  Letting Bn denote the binary strings of length n, explain 

why every string in Bn+1 can be uniquely expressed as 
either 0 ⋅σ or 1⋅σ for some length-n binary string σ.

  (d)  Use the result of part (c) to give another proof of the result 
of part (b) using mathematical induction.

 31. Discuss the secrecy of a substitution cipher that is used to send 
a plaintext message that consists of just a single letter. 

Chapter 1 Computer Implementations 
and Exercises
Note: Some of the exercises below ask the reader to write programs that 
may not be feasible on some computing platforms or that require knowl-
edge of certain sorts of data structures that will not be essential in later 
developments in this book. For example, most of the cryptosystems that 
we will develop after this chapter are designed to work directly on either 
strings or ordered lists (vectors) of numbers. The numbers will most often 
be integers or binary numbers (zeros and ones). Later, we will essentially 
assume that plaintexts will be presented in this form. In cases where the 
programming for particular exercises is not feasible or not important for a 
particular platform or use, such an exercise may be suitably improvised or 
even skipped without any loss of continuity.

Vector/String Conversions

Oftentimes in computer implementations of cryptosystems, it is more con-
venient to work with vectors rather than strings. A vector is simply an 
ordered list. This will be the case, for example, in our development of DES 
in Chapter 8. On the other hand, it is often more aesthetic to display binary 
strings rather than binary vectors. For example, the binary vector corre-
sponding to the binary string 101100011101 might display (depending 
on your particular computing platform) as

 [1 0 1 1 0 0 0 1 1 1 0 1]

or as

 [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1]

Vectors are more versatile data structures than strings, since elements 
could be digits or any numbers. For example, the vector [32, 5] could 
not be so unambiguously represented as a string (325 would not do). The 
first two exercises below ask you to create conversion programs to pass 
between strings and vectors. If you need to work with strings of digits 
(such as binary strings), you need to know the syntax by which to enter 
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them into your computing platform. For example, the number 101 is a dif-
ferent data structure than the binary string 101.

 1. Program for Converting Strings of Digits to Vectors of  Digits. 
Write  a program Vec  =  String2Vec(Str) that inputs a 
string Str of digits (binary or decimal) and outputs the correspond-
ing vector Vec. Thus, for example, the command String2Vec
(24821) should produce the output [2 4 8 2 1]. Run your 
program with the following inputs, and record the outputs:

 (a) 110101111
 (b) 22953688
 (c) 9876543210

 2. Program for Converting Vectors of Digits to Strings of Digits. 
Write a program Str = Vec2String(Vec) that inputs a vector 
Vec of digits (binary or decimal) and outputs the corresponding 
string Str. Thus, for example, the command Vec2String([2 4 
8 2 1]) should produce the output 24821. Run your program 
with the following inputs, and record the outputs:

 (a) [1 0 1]
 (b) [1 0 1 1 0 0 0 1 1 1 0 1]
 (c) [9 8 7 6 5 4 3 2 1 0]

Integer/Text Conversions

The next four exercises ask you to develop programs that will make con-
versions between the integer/text correspondence of Table 1.3.

Since vectors tend to be easier to work with than strings, it is probably 
best (depending on your particular platform) to have programs work inter-
nally with vectors but accept inputs and/or display outputs as strings. In 
order to achieve conversions relating to Table 1.3, it is most obvious to first 
think of employing a simple lookup type code:

(using a FOR loop to go through each inputted symbol Let, and then)

IF Let = = A
 SET Code = 0
ELSE IF Let = =B
 SET Code = 1
ELSE IF Let = = C
 SET Code = 2
(…etc…)

Although this would certainly work, it would be more efficient to 
make use of any built-in text conversion programs that your platform may 
have available. Most platforms have a conversion program that converts 
any of the 256 standard ASCII symbols (including upper- and lowercase 
letters, punctuation marks, and so forth) into its unique representative 
as an integer from 0 to 255. The 26 uppercase/lowercase letters should 
be mapped to contiguous blocks of integers, so you would simply need 
to find out where A (or a) gets mapped in order to create a very simple 
program. For example, if A gets mapped to 65 (so Z would get mapped 
to 90), you could simply take the output of this built-in mapping function 
and subtract 65 to arrive at the letter-to-integer conversion of Table 1.3. TA
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In case your platform’s program can convert a whole string at once (into 
a vector of integers), your program could be accomplished in a single line 
of code.

 3. Program for Converting Uppercase Text to Integers. Write a 
program Vec = UCText2Int(STR) that inputs a string STR 
of uppercase English letters, and outputs the corresponding vector 
Vec of integers as per Table 1.3. Thus, for example, the command 
UCText2Int(CATBIRD) should produce the output [2 0 19 1 8 
17 3]. Run your program with the following inputs, and record the 
outputs:

 (a) JUSTDOIT
 (b) ROADTRIPTHISWEEKEND
 (c) HIGHSTAKESGAME

 4. Program for Converting Lowercase Text to Integers. Write a 
program Vec = LCText2Int(str) that inputs a string str 
of lowercase English letters, and outputs the corresponding 
vector Vec of integers as per Table 1.3. Thus, for example, the 
command Text2Int(catbird) should produce the output 
[2 0 19 1 8 17 3]. Run your program with the following inputs, 
and record the outputs:

 (a) longlivetheking
 (b) letsgotoamovie
 (c) dinnerpartytonite

 5. Program for Converting Integers to Uppercase Text. Write a 
program STR = Int2UCText(Vec) that inputs a vector 
Vec of integers in the range 0 to 26, and outputs the corre-
sponding string STR of uppercase English letters, as per 
Table 1.3. This is simply the inverse function of the function of 
Computer Exercise 3. First run this program on the outputs for 
UCText2Int when applied to the inputs of parts (a), (b), and 
(c) of Computer Exercise 3 to check that your new function is 
really the inverse of UCText2Int. Next, run your program 
with the following inputs, and record the outputs:

 (a) [2 7 0 12 15 0 6 13 4]
 (b) [5 8 11 4 19 12 8 6 13 14 13]
 (c) [2 7 14 2 14 11 0 19 4 12 14 20 18 18 4]

 6. Program for Converting Integers to Lowercase Text. Write a 
program str = Int2LCText(Vec) that inputs a vector Vec 
of integers in the range 0 to 26, and outputs the correspond-
ing string str of lowercase English letters, as per Table 1.3 
(but with lowercase letters). This is simply the inverse function 
of the program LCText2Int of Computer Exercise 4. What 
happens if you apply this program to the output of the program 
UCText2Int of Computer Exercise 5 to a string of uppercase 
letters? Check your conclusion by the evaluation of Int2LC 
Text(UCText2Int(CATBIRD)). Run your program with 
the following inputs, and record the outputs:

 (a) [15 8 2 10 20 15 19 7 4 15 8 4 2 4 18]
 (b) [0 1 14 17 19 19 7 4 12 8 18 18 8 14 13 13 14 22]
 (c) [15 17 14 2 4 4 3 22 8 19 7 2 14 13 19 8 13 6 4 13 2 24 15 

11 0 13 19 22 14]
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Programming Basic Ciphers with Integer Arithmetic

The programs of the preceding computer exercises should facilitate writ-
ing encryption/decryption programs for most of the basic ciphers that 
were introduced in this section. The basic idea to consider is that it is 
much simpler to work with integers rather than the letters they correspond 
to in Table 1.3. This simplicity will be further enhanced as we introduce 
new forms of arithmetic. For example, modular arithmetic of the next 
chapter is particularly suitable for implementing shift and related ciphers. 
For now, if we wanted to implement a shift cipher, say the Caesar cipher, 
using the integer representation of Table 1.3, we would simply add 3 (the 
key) to a given plaintext representative, as long as the result is less than 26. 
For example, the plaintext letter f is represented by 5 (in Table 1.3), add-
ing 3 gives 8, the corresponding representative for the ciphertext letter I 
(in Table 1.3). In case adding 3 gives an integer greater than 25, we would 
subtract 26 from the result, as this would have the same effect as cycling 
back to the beginning of the alphabet. For example, the plaintext letter y 
corresponds to 24, adding 3 gives 27, and since this is greater than 25, 
we subtract 26 to get 1, which is the representative of the corresponding 
ciphertext letter B.

 7. Program for Shift Cipher. Write a program StrOut = Shift 
Crypt(str,kappa) that inputs a string str of plaintext 
in lowercase English letters, and an integer kappa mod 26. 
The output StrOut should be the corresponding ciphertext 
(in uppercase letters) after the shift operator with key kappa 
is applied to the plaintext. Then use your program to redo the 
computations of Chapter Exercises 13 and 15.

  Note: In the decrypting parts, you will need to change 
your ciphertexts to lowercase (and choose the correct shift 
parameter).

  Suggestion: The programs of some of the preceding computer 
exercises should be useful here.

 8. Ciphertext-Only Attack on the Shift Cipher. It is known that 
the following ciphertexts were encrypted using (perhaps dif-
ferent) shift ciphers. Decrypt these messages and determine 
the corresponding keys that were used.

 (a) HXDALJAANBNAEJCRXWRBDWMNACQNWJVN
  SXWNB
 (b) BCJHJCCQNARCIKDCYJATHXDALJAJCCQN
  FJUMXAO
 (c) DWQYIDMCIFBSKGDODSFOHHVSTFCBHRSGYI
  BRSFHVSBOASXCBSG
 (d) XLIHIXEMPWSJCSYVQIXXMRKAMPPFISRXLI
  WXSGOTEKIAVMXXIRMRGSHI

 9. Program for Vigenère Cipher. Write a program StrOut = 
VigenereCrypt(str,keystr) that inputs a string str 
of plaintext in lowercase English letters and another such string 
keystr representing a key. The output StrOut should be the 
corresponding ciphertext (in uppercase letters) after the Vigenère 
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cipher with key keystr is applied to the plaintext. Then use your 
program to redo the computations of Chapter Exercise 17, part (a).

  Note: In the decrypting parts, you will need to change your 
ciphertexts to lowercase (and choose the correct key).

  Suggestion: The programs of some of the preceding computer 
exercises should be useful here. Your program should proceed 
character by character, using a FOR loop.

 10. Program for Decryption of Vigenère Cipher. Write a program 
strOut = VigenereDeCrypt(STR,keystr) that inputs 
a string STR of ciphertext in uppercase English letters and 
another such string keystr representing a key. The output 
strOut should be the corresponding plaintext (in lowercase 
letters) before the Vigenère cipher with key keystr is applied 
to produce the ciphertext. Then use your program to redo the 
computations of Chapter Exercise 17, part (b).

  Suggestion: Modify your program VigenereCrypt by 
changing each individual shift to its inverse shift.

 11. Program for Playfair Cipher. Write a program StrOut = 
PlayfairCrypt(str,keystr) that inputs a string str 
of plaintext in lowercase English letters and another such string 
keystr representing a key. The output StrOut should be the 
corresponding ciphertext (in uppercase letters) after the Playfair 
cipher when key keystr is applied to the plaintext. Then use your 
program to redo the computations of Chapter Exercise 19, part (a).

 12. Program for Decryption of the Playfair Cipher. Write a pro-
gram strOut = PlayfairDeCrypt(STR,keystr) that 
inputs a string STR of ciphertext in uppercase English letters 
and another lowercase string keystr representing a key. The 
output strOut should be the corresponding plaintext (in low-
ercase letters) before the Playfair cipher with key keystr is 
applied to it. Then use your program to redo the computations 
of Chapter Exercise 19, part (b). 

Computer-Generated Random Numbers

Most computing platforms feature built-in “random number generators” that 
are of production quality. Recall that the text cites references that provide 
detailed developments of such programs, and the interested reader may wish 
to pursue these, but our approach will be to make the following convention.

Convention: We assume that a random number generator is available on 
our computing platform. We denote it by rand, and assume that it functions 
as follows: Each time rand is called, the output will be a pseudorandom 
real number (with decimals) from the interval (0,1); that is, 0 < rand < 1.

In the language of statistics, we say that rand is uniformly distributed in the 
interval (0,1). This means that each time rand is called to generate a random 
number, the probability that rand will lie in any subinterval of (0,1) will 
equal the length of that subinterval. For example, the probability that rand 
(on any given call) be less than 1/2—that is, 0 < rand < 1/2—is 1/2, and the 
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probability that rand will be greater than 7/8—that is, 7/8 < rand < 1—is 
1/8 [the length of the interval (7/8,1)]. This rand function may also have 
ways to reset its “seed” from its default value so that it will start off differently 
whenever the program is restarted; linking the seed to the computer’s clock 
is usually a good way to accomplish this. Additional features of the rand 
function may include options that will allow it to produce ordered lists (vec-
tors) of such random numbers,* and such a feature is particularly convenient 
for generating one-time pads. Although rand produces real numbers (with 
decimals) in the special range (0,1), we often need to generate random integers 
in a specified range. This can be done using the Algorithm 1.1, which is based 
on the following simple fact.

Fact: Since rand is uniformly distributed in (0,1), if N is any positive 
integer, then N rand will be uniformly distributed in the interval (0,N).

In order to convert real numbers to integers, we use the floor func-
tion (built in to most computer platforms). This is a function mapping 
the real numbers to the integers, which operates as follows: For any real 
number x, floor(x) will be the greatest integer that is less than or equal to 
x. For example, floor(2.1) = 2 = floor(2) = floor(2.999), floor( ) ,π = 3  and 
floor(–2.6) = –3.

Algorithm 1.1: Generating Random Integers Using rand

Given two integers < k , the number J k= + − + ×floor([ ] )1 rand  
will be a random integer in the range ≤ ≤J k.

To help better understand this algorithm (in a very relevant situa-
tion), suppose we take = =0 25, .k  Then since k − + =1 26, the fact 
mentioned above tells us that [ ]k − + × ×1 26rand = rand is a real 
number that is uniformly distributed in the interval (0, 26). When we 
take the floor: floor([ ] )k − + ×1 rand , the possible integers that can 
arise are the integers from 0 to 25 (inclusive) and since each of these 
integers will occur if the previous number lies in an interval of length 
1 (in the total interval of length 26), it follows that each of these 26 
integers has a 1/26 chance of occurring.

 13. Program for Creation of Keys for One-Time Pads.
  (a)  Write a program key = OneTimePadKeyMaker 

(keylength) that inputs a positive integer keylength, 
and outputs a vector having keylength randomly chosen 
integers from the range {0, 1, …, 25}. strOut should be 
the corresponding plaintext (in lowercase letters) before 
the Vigenère cipher with key keystr is applied to it. Use 
your program to produce a length-12 key.

  (b)  Write a program having syntax LetterStr = OneTime 
PadKeyMaker(keylength) that functions like the one 
in part (a) except that the output will be a string (rather than 
a vector) of lowercase English letters that are determined by 
Table 1.3 (from the random integers that are generated). Use 
your program to produce a random key of length 12.

* If this feature is not available, ordered lists can easily be produced by using a FOR loop. 
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 14. Program for Random Integer Generator.
  (a)  Write a program Vec = RandIntGen(ell, k, length) 

that inputs three integers, the first two need only satisfy ell < 
k, and the third, length, is any positive integer. The output, 
Vec, is a vector with length elements consisting of randomly 
generated integers from the range ell k≤ ≤J . The program 
should be based on Algorithm 1.1.

  (b)  Use your program to produce a length-20 vector of ran-
dom integers from the range 26 30≤ ≤J .  Print out this 
vector.

  (c)  Use your program to produce a length-1000 vector of 
binary digits (0s and 1s). Do not print this vector, but (get 
your computer to) count how many of the entries are 0s 
and write this down. Repeat this and record the new count 
of the zeros. 



515

Appendix C: Solutions to All 
Exercises for the Reader

Chapter 1: An Overview of the Subject
EFR 1.1
 (a) The function C is not onto since any string whose first two bits 

are different from 10 will not be in the range. The function C 
is one-to-one, since C C( ) ( )σ σ= ′  implies 1010 1010⋅ = ⋅ ′σ σ  
and by ignoring the first four bits, we get that σ σ= ′.

 (b) Suppose that D b b b D b b b( ) ( ).1 2 3 1 2 3= ′ ′ ′  Let d1d2d3  = 
D b b b d d d D b b b1 2 3 1 2 3 1 2 3

′ ′ ′ = ′ ′ ′( ), ( ). Equating first bits: 
d d1 1= ′ , the definition of D tells us that b b1 1= ′ . Next, since 
d d2 2= ′ , the definition of D tells us that b b b b1 2 1 2+ ′ + ′,  are 
either both even, or both odd. But since we already know that 
b b1 1= ′ , this means that b b2 2, ′ are either both even, or both odd. 
Since these bits can only be 0 or 1, this forces them to be equal, 
i.e., b b2 2= ′ . Finally, since d d3 3= ′ , a similar argument shows 
b b3 3= ′ . We have thus shown that D b b b D b b b( ) ( )1 2 3 1 2 3= ′ ′ ′  
implies b b b b b b1 2 3 1 2 3= ′ ′ ′ , i.e., D is one-to-one.

EFR 1.2
 (a) YQQFFTQUOQYMZMFZAAZ
 (b) Jenkins is a turncoat

EFR 1.3
 (a) FWMSOOCNOYHZC
 (b) Break out at midnight

EFR 1.4
 (a) First we state the procedure using the Vigenère tableau 

(Table 1.2) and then we explain why it works.
  Procedure: For each keyword letter, look in the correspond-

ing row of the Vigenère tableau for the ciphertext letter A; 
the column letter where A is found will be the corresponding 
letter for the decryption keyword, if Vigenère encryption is 
used. For example, the first letter of the Vigenère keyword 
money is m, and we find that in the m-row of the Vigenère 
tableau, the letter A appears in the o-column. So the first let-
ter of the Vigenère decryption keyword is o.

  Why This Works: In the Vigenère encryption process, each 
letter of the keyword corresponds to a substitution shift 
cipher where a gets shifted to the keyword letter. For exam-
ple, if the first keyword letter is m, then the corresponding 
shift would shift the plaintext letter a to the ciphertext let-
ter M, and all letters are shifted 12 letters down (looking 
at Table 1.3 will be helpful). In order to reverse this shift, 
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we could either shift the ciphertext letters 12 units up the 
alphabet, or shift them the complementary number 26 – 12 = 
14 units down, corresponding to the shift where a goes to O. 
(Because with the latter option, applying both the original 
shift and the latter shift would result in a shift of 12 + (26 – 
12) = 26 letters down the alphabet, which simply brings the 
plaintext letters back to themselves.) In summary, Vigenère 
decryption can be achieved by using the Vigenère encryp-
tion process on the modified keyword by taking each letter 
of the original keyword, and using instead the letter that is 
obtained by shifting a in the opposite direction by the same 
amount, or the complementary number of letters down. 
The Vigenère tableau is organized in such a way that these 
reverse shifts are readily obtained by the indicated lookup 
procedure.

 (b) Using the procedure of part (a), the corresponding Vigenère 
decryption keyword would be omnwc.

  Note: Here is an explanation in terms of shift ciphers: The 
Vigenère encryption keyword money corresponds to shifts 
of 12, 14, 13, 4, 24 down the alphabet (looking at Figure 1.3 
of the text might be helpful), the corresponding inverse shifts 
would be 26 – 12, 26 – 14, 26 – 13, 26 – 4, 26 – 24 = 14, 12, 
13, 22, 2, which correspond to the keyword omnwc.

EFR 1.5
 (a) Removing the duplicated letter a, the modified keyword 

barcelon results in the Playfair array:

b a r c e
l o n d f
g h ij k m
p q s t u
v w x y z

  Inserting x’s between double letters of the plaintext, and pairing 
off the letters gives us:

     me et ag en ty ul lo va tx th ea ub er ge re st au ra nt

  Encrypting each pair according to the applicable case 1, 2, or 
3 produces:

   uf cu bh rf yc pf on wb sy qk br pe bc mb cb tu eq cr ds

  and thus the following ciphertext:
 (b) Breaking off the ciphertext into pairs (and putting it in 

lowercase) gives:

       ma xh nv gl be rc cx si hb xs gb bc ac mr de rq rz

  Using the array of part (a), and reversing each of appropriate 
cases 1, 2, or 3 of the Playfair encryption cipher produces the 
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following:

he wi lx lb ec ar ry in ga si lv er br ie fc as ex

Putting the words together and removing redundant x’s gives 
the original message: “He will be carrying a silver briefcase.”
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Appendix D: Answers and 
Brief Solutions to Selected 
Odd-Numbered Exercises

Chapter 1
1. All three are functions.

(a) Domains of F and G are {a, b, c, d}, domain of H is {a, b, c}.
Codomains of F and H are {1, 2, 3, 4}, codomain of G is {1,
2, 3}. Range of F is {1, 2, 3, 4}, range of G is {1, 2, 3}, range
of H is {1, 2, 4},

(b) F and H are one-to-one, G is not.
(c) F and G are onto, H is not.
(d) Only F is bijective (both one-to-one and onto).

3. (a) Yes
(b) Yes
(c) 00010111
(d) cabby

5. (a)  Such a function need not be onto. For example, the set A =
{1, 2} has more elements than the set B = {1}, but the function 
f from A to B defined by f(1) = 1 = f(2) is not onto. Such a 
function can never be one-to-one. Reason: Since one-to-one 
functions can never have duplicated outputs, the range must 
be the same size as the domain. But the range is a subset of 
the codomain, so for a one-to-one function, the size of the 
codomain must be at least as large as the domain.

(b) Such a function need not be one-to-one. For example, the
set A = {1, 2} has fewer elements than the set B = {1, 2, 3},
but the function f from A to B defined by f(1) = 1 = f(2) is not
one-to-one. Such a function can never be onto. Reason: The
range is at most as large as the domain A, which is assumed
to be smaller than the codomain B.

In each of the examples below, we will specify a function
f :{1,2,3, 1,2,3 }.

Any constant function, such as f (i) = 1, for each i ∈{1,2,3,
} is neither one-to-one nor onto.

The right shift function f (i) = i + 1 for each i ∈{1,2,3, } is
one-to-one but not onto since 1 is not in the range.
The function defined by f(1) = 1 and f (i) = i − 1, for each
i ∈{2,3, }, is onto but not one-to-one since f(1) = 1 = f(2).
The function defined by taking each even integer to the odd
integer right before it, and each odd integer to the even integer
right after it, is bijective and satisfies the indicated condition
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(an output never equals its input). Here is a formula for this 
function: f i i( ) = −1 if i is even, and f i i( ) = +1 if i is odd.

9. (a) Yes
(b) No. Reason: No string ending in a zero is in the range.
(c) No

11. (a)  Yes. Reason: If = ′ ′ ′ ′ ′ ′f b b b b b b b b f b b b b b b( ) (1 2 3 4 5 6 7 8 1 2 3 4 5 6

′ ′b b ),7 8  this means that = ′ ′ ′ ′ ′ ′∗b b b b b b b b b b b b b b2 4 6 8 1 3 5 2 4 6 8 1 3  
′ ′∗b b5  so equating bits gives us that b bi i= ′  for all indices i

except i = 7. But since b b∗ ∗= ′ , we also must have (according 
to the definition of f) that b b b6 7 8+ + , b b b6 7 8

′ + ′ + ′ are both
even or both odd, and since we already know that the first 
and third of these three terms are the same, it follows that 
b b7 7, ′  are both even or both odd. Since they can only be 0 or
1, they must be the same.

(b) Yes. Reason: Given any length-8 string d d d d d d d d1 2 3 4 5 6 7 8 , we 
need to find an input string b b b b b b b b1 2 3 4 5 6 7 8 that will give us 
this output under f, i.e., satisfying =∗b b b b b b b b d d d2 4 6 8 1 3 5 1 2 3 
d d d d d .4 5 6 7 8  From this latter equation, it follows that we must set  
b d b d b d b d b d b d b d2 1 4 2 6 3 8 4 1 5 3 6 5 7= = = = = = =, , , , , , , so 
the only bit left to specify in the input is b7 .  Since b b6 8,  are 
already specified as d d3 4, , in order to have b d∗ = 8 , we will need
to choose b7 so that if d8 1= , then b d d b b b7 3 4 6 7 8+ + = + +( ) 
is even, whereas if d8 0= , then b d d7 3 4+ + is odd. In either
case, notice that we must have b d d d7 3 4 8+ + +  be odd. This
can clearly be done (in only one way) as follows: if d d d3 4 8+ +
is odd, we must have b7 0= , while if d d d3 4 8+ + is even, we
must have b7 1= . Alternatively, the fact that f is onto follows 
from the result of  Exercise 6(a) and the fact that f is one-to-one 
(which was proved in part(a)).

(c) The inverse function’s formula was determined in part (b)
in the process of showing f is onto. Here is the summary
formula of the inverse function: =−f d d d d d d d d( )1

1 2 3 4 5 6 7 8

d d d d d d d d b∗∗ =5 1 6 2 7 3 4 1( bb b b b b b b2 3 4 5 6 7 8 ), where d ∗∗= 0, if 
d d d3 4 8+ + is odd, and otherwise d ∗∗= 1.

13. (a) (i) WKHVKLSPHQWZLOODUULYHDWQRRQ
(ii) ODBORZXQWLOIULGDB

(iii) DOZDBVXVHWKHEDFNGRRU
(iv) WKHSKRQHLVEXJJHG

(b) (i) Bring the item to Jenkins
(ii) Send Agent Polk a signal

(iii) Intercept their case worker
(iv) Check in to the hotel

15. (a) (i) PDAODELIAJPSEHHWNNERAWPJKKJ
(ii) HWUHKSQJPEHBNEZWU

(iii) WHSWUOQOAPDAXWYGZKKN
(iv) PDALDKJAEOXQCCAZ

(b) (i) Waiting for instructions
(ii) Subject has boarded plane
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(iii) Make initial contact as a businessman
(iv) Operation has been compromised

17. (a) (i) KVGCLBGAGXXPZZNKVKZJGKXGFCP
(ii) COAVSPLBVSPYIWFKC

(iii) RZYKCLLGGDLXSOEUHHFF
(iv) KVGZLHESKCFNXUGN

(b) (i) Harrell will be waiting for you
(ii) The meeting with Watson is as set up

(iii) Come alone but bring your piece
(iv) Rent a room in the Hotel Marignon in the Fifth

Arrondisement

19. (a) (i) QMYIGSTGCPQZKGRLXKPKIGBRTDDT
(ii) RLAHSZDUPOMGPKKCAW

(iii) LRXYHYWDBPGYCBADIDKT
(iv) QMGVMSPCSKCZLVPGKU

(b) (i) Take cover now
(ii) The money is buried underneath

(iii) Pay off the watchman
(iv) Pretend you are a professor; once inside, copy the files

21. If we have any string of plaintext and the corresponding string
of ciphertext, for each matched letters in the strings, the corre-
sponding keyword shift letter is specified by the number of let-
ters that the plaintext letter gets shifted down the alphabet to get
the corresponding ciphertext letter. If we shift 0 letters down, the
keyword letter is a; if we shift 1 letter down, the keyword letter
is b, etc. (see Table 1.3). Thus, for example, if we knew that a
Vigenère cipher was used to convert the plaintext “theyhavegre-
nades“ into the ciphertext POMQRETANZWXEBAZ, since the
first letter t goes to P, which is 26 – (19 – 15) = 22 letters down
the alphabet, we get the first keyword letter must be w. (To see
this, refer to Table 1.3, and use the fact that since P is to the left
of t, the shift must have cycled back after passing z.) Similarly,
since the next plaintext letter h goes to O, which is 14 – 7 = 7
letters down the alphabet, the second keyword letter must be h.
Continuing in this fashion, the given plaintext/ciphertext cor-
respondence produces the following keyword sequence “whis-
keywhiskeywh,” so it appears that the keyword is whiskey. For
such an attack to completely determine the keyword, the known
strings must be at least as long as the (unknown) keyword.

23. (a) (i)  DVGXDDVVDAGXDDAGDVVVDXDDVXDGDVX
DDDDADGAVGDXAXXGXVAVFDG

(ii) ADGDAVVVDDVVAFDFGXDVDDAGDXGXXG
AGVG

(iii) VDDXXDDDAXDDDFGVDGVDDFFGDVGDXV
AGGFVDFGDV

(iv) DAGVFGGXDXVDXDDDDFVADDAGGVXXXDGD
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(b) (i) retreat
(ii) more munitions needed in Normandy

(iii) strike tomorrow at 4 am
(iv) Metz is a lost battle redeploy in Lyon

25. Each plaintext letter gives rise to two ciphertext letters. In Step 1,
the plaintext letters are assigned to unique pairs of ciphertext,
but into Step 2 these pairs are broken as the letters are put row
by row into an array, and after mixing up the columns, the let-
ters are processed column by column. So it is very unlikely that
identical adjacent pairs of letters will give rise to the same four-
letter ciphertext passages. Here is a specific example. Under the
keyword PARIS, the ADFGVX ciphertexts for “abc” and “cab”
are VFDGFF and GFFVFD, respectively. In the first, “ab” corre-
sponds to VFDG, while in the second it corresponds to FVFD.

27. No. Shifting to the left by k letters is the same as shifting to the
right by 26 – k letters.

29. Generally (i) is more secure. This makes sense since the key
needed to describe (i) has length nm, while the key needed to
describe (ii) has length n + m (which is usually smaller than nm).
For an extreme case, consider what happens when m is a factor
of n (or the other way around). Then the cipher (ii) is equivalent
to a Vigenère cipher with keylength n, so the additional Vigenère
cipher of keylength m adds no additional security. Here is a spe-
cific example: if in (ii) n = 4 and m = 2, and the corresponding
keywords are gold and be, then the cipher (ii) is just the Vigenère
cipher whose keyword is hsmh (this is simply the ciphertext when
the Vigenère cipher with keyword be is applied to the plaintext
gold), which is much less secure than a Vigenère cipher with a
key of length nm = 8. In general, the effective keylength of the
cipher (ii) will be the least common multiple of n and m, so (ii)
will compare better with (i), in terms of security, in cases where
n and m do not share many common factors. But even when n
and m have no common factors (other than 1), so that the effec-
tive single Vigenère cipher keylength in (ii) is nm, the system (i)
has many more actual Vigenère cipher keys than the effective
length mn keys resulting from (ii). In particular, the individual
characters in (i) can be chosen randomly, but those in (ii) cannot
be made to have a random pattern.

31. Such a system has perfect secrecy. With the knowledge of just
one letter of ciphertext, any of the 26 possible plaintext letters is
equally possible.

Chapter 2
1. (a) False

(b) True
(c) False




